
AutomatedPCBComponentPlacement
using Reinforcement Learning

Luke Vassallo

Supervisor: Dr Josef Bajada

September, 2023

Submitted in partial fulfilment of the requirements for the degree of M.Sc.
Artificial Intelligence.

Copyright in text of this thesis rests with the Author. Copies (by any process) either in
full, or of extracts may be made only in accordance with regulations held by the Library
of the University of Malta. Details may be obtained from the Librarian. This page must
form part of any such copies made. Further copies (by any process) made in accordance
with such instructions may not be made without the permission (in writing) of the Author.

Ownership of the right over any original intellectual property which may be contained
in or derived from this thesis is vested in the University of Malta and may not be made
available for use by third parties without the written permission of the University, which
will prescribe the terms and conditions of any such agreement.

Copyright ©2023 University of Malta
www.um.edu.mt
Second edition, Thursday 7th September, 2023

All the wonders of our universe can in effect be captured by simple rules, yet
there can be no way to know all the consequences of these rules, except in
effect just to watch and see how they unfold.

(Stephen Wolfram)

iii

Acknowledgements
I wish to convey my heartfelt appreciation to everyone who contributed
to the realisation of this thesis and played a substantial role in shaping this
remarkable phase of my journey.
First and foremost, I am immensely grateful to Dr Josef Bajada, my M.Sc.
advisor, whose guidance and mentorship have been invaluable to me. He
introducedme to reinforcement learning and the world of research, which
have profoundly influenced my professional development. His extensive
expertise in planning and reinforcement learning, coupled with his excep-
tional leadership, played a crucial role in delivering the contributions of
this work. I could not have asked for a better mentor to assist me.
I would like to thank Dr Vincent Vella, Dr Jean Paul Ebejer and Prof. Luca
Iocchi for examining my thesis and Prof. Matthew Montebello for chair-
ing the process. Their insightful questions and detailed comments have
significantly improved the quality of this thesis.
Next, I would like to thank Marja for her boundless patience, unwaver-
ing encouragement and dedication. I would also like to extend my thanks
to my parents, Emanuel and Ruth, my brother Darren and uncle Geoffrey,
for encouraging me to follow my passions and supporting me in pursuit
of my goals with their unconditional love.
Lastly, I want to thank everyone else who shared an ear or provided an
opinion, whether directly or indirectly related to this thesis. These con-
versations have been a source of inspiration, and some of their ideas live
through this work.
I am grateful to the Malta Digital Innovation Authority (MDIA) for their
support through the Pathfinder scholarship.

iv

Abstract
Component placement is the first step of PrintedCircuit Board (PCB) phys-
ical design and demands considerable time and domain expertise. Place-
ment quality impacts the performance of subsequent tasks, and the gen-
eration of an optimal placement is known to be, at the very least, NP-
Complete. While stochastic optimisation and analytic techniques have
had some success, they often lack the intuitive understanding of human
engineers. Consequently, automation tools have not gained acceptance
among hardware engineers, resulting in predominantly manual PCB phys-
ical design. Moreover, limited literature on this topic is available, with a
particular focus on placement co-optimisation for niche applications. We
aim to challenge this prevailing approach and propose a general place-
ment methodology that integrates an AI-assisted workflow, shifting the
designer’s focus towards higher-level problem-oriented tasks.
This thesis investigates state-of-the-art AI constructive placementmethod-
ology and, based on its shortcomings, proposes a novel Markov Decision
Process (MDP) formulation for iterative placement. We study the funda-
mental mechanisms in a constrained single-component setup using ad-
vanced policy optimisation and actor-critic Reinforcement Learning (RL)
algorithms. Furthermore, we evaluate the feasibility of encouraging the
agent to learn by emulating the design style of experts or by acting as an
expert itself in an iterative self-improvement scenario. Based on the key
findings, we adapt it to a multi-component setup and learn general poli-
cies for optimising the placement of components on unseen PCBs. Our
research suggests that an adaptive reward signal removes the need for
expert knowledge, and the multi-component environment yields diverse
training datasets sufficient for learning general policies from a handful
of circuits. Our methodology is evaluated on unseen circuits alongside
simulated annealing, an effective methodology for optimising the place-
ment of circuit components on a PCB. TD3 and SAC, on average yield
17% and 21% lower post-routing wirelength. Qualitative analysis shows
that the policies learn fundamental placement techniques. Collectively,
they demonstrate emergent collaborative and competitive behaviours be-
tween components and faster placement convergence over an order of
magnitude. The methodologies have been open sourced and are available
on GitHub https://github.com/lukevassallo/rl_pcb.git

v

https://github.com/lukevassallo/rl_pcb.git

Contents

List of Figures xi

List of Tables xiv

Listings xvi

List of Abbreviations xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Aims and Objectives . 3
1.3 Proposed Solution . 3
1.4 Document Structure . 4

2 Background 5
2.1 Electronic Design Automation . 5
2.2 IC Design Process . 6

2.2.1 Design Flow . 7
2.3 PCB Design Process . 9

2.3.1 Components . 9
2.3.2 PCB Structure . 10
2.3.3 Design Flow . 11

2.4 Graph Neural Networks . 13
2.4.1 Graph Neural Networks . 13

2.5 Reinforcement Learning . 16
2.5.1 Basics . 16
2.5.2 The Bellman Equation . 18
2.5.3 Fundamentals RL Algorithms . 19
2.5.4 Deep Reinforcement Learning . 20

vi

CONTENTS

2.5.5 Actor-Critic . 21
3 Literature Review 23

3.1 PCB Placement . 23
3.1.1 General Placement . 24
3.1.2 Thermal-Aware PCB Placement . 24
3.1.3 PCB Placement for Power Modules 26

3.2 Layout Techniques in IC Physical Design . 27
3.2.1 Black Box Optimisation . 27
3.2.2 Analytic Placers . 29

3.3 Machine Learning . 32
3.3.1 Performance Prediction . 33
3.3.2 Learning Based Placers . 34

3.4 Key Findings from Prior Work . 37
4 Materials & Methods 39

4.1 Constructive Placer . 40
4.1.1 Gym Environment . 40
4.1.2 Placement Engine . 43
4.1.3 Dataset . 45
4.1.4 Wirelength Prediction . 45
4.1.5 Training and Experimental Setup . 50
4.1.6 Evaluation . 51

4.2 Single-Component Iterative Placer . 52
4.2.1 Iterative PCB Component Placement as an MDP 53
4.2.2 Gym Environment . 54
4.2.3 Observation Space . 55
4.2.4 Action Space . 59
4.2.5 Reward Signal . 61
4.2.6 Dataset . 65
4.2.7 Training . 66
4.2.8 Experimental Setup . 68
4.2.9 Evaluation . 71

4.3 Multi-Component Iterative Placer . 71
4.3.1 Environment . 72
4.3.2 Computing Observations in a Multi-Component Setup 73
4.3.3 Episodic Flow . 74

vii

CONTENTS

4.3.4 Dataset . 76
4.3.5 Training . 76
4.3.6 Experimental Setup . 77
4.3.7 Evaluation . 78

5 Results & Discussion 79
5.1 Constructive Placer . 79

5.1.1 Wirelength Prediction . 80
5.1.2 Constructive Placement . 82
5.1.3 Key Conclusions for Constructive Placement 85

5.2 Single-Component Iterative Placement . 86
5.2.1 Experiments with a Discrete Action Space and R1 87
5.2.2 Experiments with a Discrete Action Space and R2x 90
5.2.3 Experiments with a Continuous Action Space and R2x 95
5.2.4 Action Space Comparison on R2x . 1005.2.5 Experiments with a Continuous Action Space and R3 100
5.2.6 Key Conclusions for Single-Component Iterative Placement 105

5.3 Multi-Component Iterative Placement . 107
5.3.1 Reward Function Parameter Trade-off Experiments 108
5.3.2 Ablation Experiments . 110
5.3.3 Qualitative Policy Analysis . 112
5.3.4 Key Conclusions for Multi-Component Iterative Placement 117

5.4 Summary . 118
6 Conclusions 119

6.1 Revisiting the Aims and Objectives . 119
6.1.1 Constructive Placer . 119
6.1.2 Formulating the PCB Component Problem as an RL task 120
6.1.3 Design and Testing of a Single-Component PCB Placer 120
6.1.4 Multi-Component RL Capable of Generalised PCB Placement 121

6.2 Limitations . 121
6.2.1 Limitations of Constructive Placement 122
6.2.2 Evaluation in terms of Post-Routing Wirelength 122
6.2.3 Sub-Optimal Weighting of Adaptive Reward Parameters 122

6.3 Future Work . 123
6.3.1 Expand the Multi-Component Setup 123
6.3.2 Investigate the Offline Reinforcement Learning 124

viii

CONTENTS

6.3.3 Improve Feature Extraction and Move Beyond Wirelength 124
6.3.4 Improve Policy Performance . 125

References 126

Appendix A Infrastructure and tools 136
A.1 KiCAD PCB Design Software Suite . 137
A.2 PCB Place and Route Tools . 137
A.3 Netlist Graph . 139
A.4 Internal Representation . 139
A.5 Automated Builds . 142
A.6 RL Framework . 143
A.7 Reproducibility of Results . 144

Appendix B Datasets 145
B.1 Constructive Placement Dataset . 146
B.2 Single-Component Iterative Placement Dataset 147
B.3 Multi-Component Iterative Placement Dataset 149

Appendix C Supplementary Experiments 150
C.1 Expectations from Single-Component Iterative Placement 151
C.2 Single-Component Placement with Discrete Actions 151

C.2.1 Quantitative Analysis of Episode and Step Length 151
C.3 Single-Component Placement with Continuous Actions 158

C.3.1 Preliminary Experiments . 158
C.3.2 Quantitative Analysis of Episode Length 159

C.4 Multi-Component Iterative Placement . 160
C.4.1 Impact of Expert Knowledge on Learning Performance 160
C.4.2 Impact of Replay Buffer on Adaptive Reward Learning 163

Appendix D Additional Background 167
D.1 Artificial Neural Networks . 167

D.1.1 Perceptron Model . 167
D.1.2 Multi-Layer Perceptrons . 168
D.1.3 Neural Network Training . 169

D.2 Graph Theory . 170
D.2.1 Mathematical Representation . 171

D.3 Net Models . 172

ix

CONTENTS

D.3.1 Differentiable Net Models . 172
Appendix E Machine Information and Statistics 175

E.1 Machine Information . 175
E.2 Experiment Runtimes . 175

x

List of Figures

2.1 Key steps in VLSI circuit design flow with an emphasis on physical design . . . 6
2.2 Comparison of through-hole and surface mount package technologies 10
2.3 Cross-section of a Printed Circuit Board (PCB) 11
2.4 Illustration of placed and routed PCBs in KiCad 12
2.5 Layer architecture of a GAT neural network . 15
2.6 Agent-environment interaction in Reinforcement Learning (RL) 17
3.1 Evolution of IC placement tools . 27
4.1 Methodology chapter flow . 39
4.2 Constructive PCB placement environment . 41
4.3 Key depictions of the constructive placement process 44
4.4 Dataset generation strategy for wirelength prediction 47
4.5 Neural architecture for wirelength prediction . 48
4.6 Procedure for optimising neural architecture and hyperparameters 50
4.7 Procedure for evaluating RL policies against SA 52
4.8 PCB representation as a stack of images for single-component placement . . . 56
4.9 Overlap and line-of-sight masks derived from circle segments 57
4.10 Extraction of directional information from the circuit netlist 58
4.11 Discrete and continuous action spaces . 60
4.12 Flowchart illustrating parallelised training procedure 67
4.13 PCB representation as a stack of images for multi-component placement . . . 74
4.14 Flowchart illustrating the multi-component training procedure 75
5.1 Experimental flow for constructive placement methodology 79
5.2 Training performance for the wirelength predication task 81
5.3 Plot of average return for constructive placement training 83
5.4 Placements generated by the proposed constructive methodology alongside SA 84
5.5 Experimental flow for iterative single-component methodology 87

xi

LIST OF FIGURES

5.6 Average return for training on layout D1a guided by reward R1. 88
5.7 Distinct terminal states demonstrating learned behaviours under reward R1 . . 89
5.8 Generalisation capability with R2a and a discrete action space 91
5.9 Generalisation capability with R2b and a discrete action space 92
5.10 Distinct terminal states demonstrating policies with discrete action spaces . . 93
5.11 Generalisation capability with R2a and a continuous action space 96
5.12 Generalisation capability with R2b and a continuous action space 97
5.13 Distinct terminal states illustrating policies with continuous action spaces . . . 99
5.14 Average return for variations of R3 and replay buffer sizes 102
5.15 Illustration of policy behaviour on different configurations of reward signal R3 . 1035.16 Generalisation capability with R3 and a small replay buffer 105
5.17 Experimental flow for iterative multi-component methodology 107
5.18 Average return for multi-component parameter trade-off experiments 108
5.19 Average return for multi-component ablation experiments 111
5.20 Circuit placements optimised with SA-PCB for 600 steps 112
5.21 Key states in optimising MU0 with policy (EW=8, Overlap=2) 113
5.22 Key states in optimising MU2 with policy (EW=8, Overlap=2) 113
5.23 Key states in placing MU0 with policy (HPWL=5, Overlap=5) 114
5.24 Key states in placing MU2 with policy (HPWL=5, Overlap=5) 115
5.25 Key states in placing MU0 with policy (HPWL=8, Overlap=2) 116
5.26 Key states in placing MU2 with policy (HPWL=8, Overlap=2) 117
A.1 Technology Stack . 136
A.2 Illustration of the automated build and test processes 142
A.3 Depiction of the RL training framework . 143
B.1 Constituents of the single-component dataset, D1 148
B.2 Constituents of the multi-component dataset, D2. 148
C.1 Illustration of expected policy behaviour . 150
C.2 Return-per-step and episode length relationship for a discrete action space . . 152
C.3 Illustration of random initialisation influencing the learning process 154
C.4 Average return for training with fixed and random initialisation 155
C.5 NAS results for TRPO with a discrete action space 156
C.6 NAS results for PPO with a discrete action space 157
C.7 Average return for the considered RL algorithms on continuous action spaces . 158
C.8 Return-per-step and episode length relationship for a continuous action space 160
C.9 Average return illustrating the impact of expert knowledge on training 162

xii

LIST OF FIGURES

C.10 Average return illustrating the impact of the replay buffer size and resizing
strategy on the learning process . 165

C.11 Average return illustrating the impact of the replay buffer size and resizing
strategy on the learning process (pruned) . 166

D.1 Rosenblatt’s perceptron model . 168
D.2 Architecture of a Multi Layer Perceptron (MLP) 169
D.3 Illustration of basic graph structures . 171
D.4 Illustration of different wirelength models . 173

xiii

List of Tables

4.1 Observation space for the constructive placement environment 42
4.2 PCB netlist graph attributes and target parameters 46
4.3 Optimisation criteria for wirelength prediction model 49
4.4 TRPO and PPO configurations for constructive placement 51
4.5 Observation space for iterative component placement 54
4.6 Discrete action space for iterative component placement 55
4.7 Continuous action space for iterative component placement 55
4.8 Summary of reward signals used for iterative single-component placement . . 56
4.9 Default configuration for Stable Baselines3 RL algorithms 68
4.10 Hyperparameter ranges considered for the Neural Architecture Search (NAS) . 68
4.11 Default single-component environment parameters 69
4.12 Combined replay buffer and parameter experiments for R3 70
4.13 Multi-component parameter experiment configurations 78
4.14 Multi-component ablation experiment configurations 78
5.1 Optimisation results for the wirelength prediction task 80
5.2 HPWL and routed wirelength prediction accuracy 82
5.3 Average return after constructive placement training 83
5.4 HPWL and post-routing wirelength comparison between RL-based construc-

tive placement and SA . 85
5.5 Average return for policies trained with reward signal R1 88
5.6 NAS results for policies with discrete action spaces 90
5.7 Average return comparing optimised and default models on R2a 93
5.8 NAS results for policies with continuous action spaces 95
5.9 Average return comparing optimised and default models on R2b 98
5.10 Comparison between discrete and continuous action spaces 100
5.11 Average return for experiments with parametrised R3 configurations 101
5.12 Average return comparing optimised and default models on R3 104

xiv

LIST OF TABLES

5.13 Summary of average return for multi-component parameter configurations . . 109
5.14 Average post-routing wirelength from the best parameter experiment policies 109
5.15 Summary of average return for multi-component ablation experiments 110
5.16 Average post-routing wirelength from the best ablation experiment policies . . 112
A.1 Description of node member variables in circuit netlist 140
A.2 Description of edge member variables in circuit netlist 140
B.1 Enumeration of all circuits in the dataset . 145
B.2 Enumeration of attributes associated with a circuit netlist 146
B.3 Configuration for automatic dataset generation 146
B.4 Detailed dataset constituents used for wirelength prediction 147
B.5 Multi-component dataset employed fro training and testing 149
C.1 Configurations for episode and step length experiments 152
C.2 Average return contrasting the impact of fixed and random initialisation 155
C.3 Average return for optimised configurations with a continuous action space . . 159
C.4 Average return for experiments studying the impact of expert knowledge . . . 161
C.5 Difference in average return due to expert knowledge 161
C.6 Fixed and variable-size replay buffer configurations 163
C.7 Average return for replay buffer experiments . 164
E.1 Machine specifications . 175
E.2 Constructive Placement Experiment statistics 176
E.3 Single-Component Placement Experiment statistics 176
E.4 Multi-Component Placement Experiment statistics 177

xv

Listings

A.1 Example of a PCB file . 140

xvi

List of Abbreviations

A2C Advantage Actor Critic . 21
AI Artificial Intelligence . 3
ANN Artificial Neural Network . 167
ANSI American National Standards Institute . 10
ASIC Application Specific Integrated Circuit . 34
CAD Computer Aided Design . 10
CLPSO Comprehensive Learning Particle Swarm Optimisation 25
CNN Convolutional Neural Network . 13
DDPG Deep Deterministic Policy Gradients . 22
DQN Deep Q Network . 20
DRC Design Rule Check . 12
DRV Design Rule Violation . 26
EDA Electronic Design Automation . 2
ERL Evolutionary Reinforcement Learning . 125
EW Euclidean Wirelength . 72
FEA Finite Element Analysis . 25
FPGA Field Programmable Gate Array . 5
GA Genetic Algorithm . 24
GAT Graph Attention Network . 15
GCN Graph Convolution Network . 13
GNN Graph Neural Network . 5
HLS High Level Synthesis . 33
HPWL Half Perimeter Wire Length . 29
IC Integrated Circuit . 2
IP Intellectual Property . 7
IPC Institute for Interconnecting and Packaging Electronic Circuits 10

xvii

List of Abbreviations

KL Kullback-Leibler . 21
LSE Logarithm-Sum-Exponential . 31
MCM Multi Chip Module . 5
MDP Markov Decision Process . v
ML Machine Learning . 4
MLP Multi Layer Perceptron . xiii
MPNN Message Passing Neural Network . 14
MSE Mean Square Error . 170
NAS Neural Architecture Search . xiv
NPC Nondeterministic Polynomial time - Complete 2
PCB Printed Circuit Board . v
PPA Power Performance and Area . 7
PPO Proximal Policy Optimisation . 21
PSO Particle Swarm Optimisation . 25
ReLU Rectified Linear Unit . 80
RL Reinforcement Learning . v
RMSE Root Mean Square Error . 49
RTL Register Transfer Level . 33
SA Simulated Annealing . 3
SARSA State Action Reward State Action . 19
SAC Soft Actor Critic . 22
SMD Surface Mount Device . 9
SWIG Simplified Wrapper and Interface Generator 43
TD3 Twin Delayed Deep Deterministic Policy Gradients 22
TPE Tree-structured Parzen Estimator . 50
TPU Tensor Processing Unit . 37
TRPO Trust Region Policy Optimisation . 21
UI User Interface . 66
VIA Vertical Interconnect Access . 10
VLSI Very Large Scale Integration . 6

xviii

1 Introduction

The PCB physical design process involves two steps: placement and routing. Placement
determines the precise geometrical positions of all the components in the circuit, while
routing involves drawing wires to perform connections as described by the schematic
(Kaeslin, 2008, p .40). This thesis focuses on the placement step which places all the
circuit components in the netlist onto a pre-defined layout region while minimising circuit
parameters such as wirelength and component overlap. Automated tools often formulate
the problem as a multi-objective optimisation, minimising a combination of these two
parameters (Kahng et al., 2022, p .95). At a high-level, component placers are classified
as constructive or iterative. The former order the circuit netlist according to a criterion
such as component size or connection density and sequentially place them onto an empty
layout region. The latter starts with random placement and is iteratively improved until a
terminal condition is reached or a pre-defined amount of steps have been performed.

1.1 Motivation
Hardware design offers an extra degree of freedom for product differentiation. However,
small design teams may lack intricate knowledge of the subject and find it challenging
to tackle such an endeavour. By contrast, those with in-house expertise spend signifi-
cant time performing physical design. From a product perspective, system-level design,
selection and interconnectedness of components are often of the most value. Designing
the PCB that meets the requirements of the product is often seen as a transformation of
the abstract setup that does not augment these features. However, it requires technical
expertise and knowledge of physical principles to perform this task reliably, meeting re-
quirements and conforming to standard certifications. The duration of the design process
depends on various factors ranging from design complexity to resources to the team’s ex-
pertise and, as a result, may span from days tomonths. By abstracting complexity through
acPCB design automation, we enable another design dimension to enhance product dif-
ferentiation in the marketplace and accelerate innovation through custom solutions.

1

CHAPTER 1. INTRODUCTION

The Electronic Design Automation (EDA) field encompasses design flows for PCBs
and Integrated Circuits (ICs) amongst others under which physical design falls. Like many
physical design processes, placement is at least Nondeterministic Polynomial time - Com-
plete (NPC) (Garey et al., 1976), meaning that a placement solution can neither be found
nor verified in polynomial time. The PCB and IC design processes have much in common,
but the scale is one of the fundamental ways they differ.

The EDA field encompasses design processes for PCBs and ICs, with placement being
a key physical design task. Placement is at least NPC (Garey et al., 1976), meaning that
a solution can neither be found nor verified in polynomial time. Although PCB and IC
designs share similarities, their scale is a distinguishing factor. Khailany et al. (2020) notes
that the work done per IC has increased while the design time has remained roughly the
same. This indicates that manual effort has been offloaded to software automation tools,
which have become crucial for taping ICs. As a result, IC physical design is an actively re-
searched topic in academia (Gao et al., 2023; Lin et al., 2021; Lopera et al., 2021; Markov
et al., 2015) and industry (Agnesina et al., 2023; Ho et al., 2023a; Khailany et al., 2020).
By contrast, PCB layout is still tractable to manual layout, so it is still predominantly per-
formed by hand. For this reason, in recent years, little research has been published on
automating the physical design, with some notable exceptions that treat specific chal-
lenges (Alexandridis et al., 2017; Ning et al., 2020). Throughout this thesis, we look at
both fields to draw inspiration for proposing our methodologies.

Deep learning is seeing great potential in EDA for reducing design time by replacing
time-consuming processes with accurate predictions (Xie et al., 2021; Zhang et al., 2020)
and accelerating the time to solution by reducing iterative development cycles through
expert predictions (Agnesina et al., 2020). Due to the NPC nature of the problem in phys-
ical design, current state-of-the-art use non-linear optimisation (Cheng et al., 2019; Lin
et al., 2015, 2021), which require formulating a differentiable cost function. That latter
becomes increasingly difficult to define when the number of objectives and constraints
increases. When metaheuristics are utilised (Sechen and Sangiovanni-Vincentelli, 1985),
this is generally easier; however, these methods have trouble scaling (Cohoon and Paris,
1987; Markov et al., 2015) to large problem sizes, which is less concerning for PCB than
IC design. Recently deep RL has been applied to automate specific physical design steps
in part (Huang et al., 2019; Xu et al., 2022) or in an end-to-end manner (Mirhoseini et al.,
2021), albeit their contributions are still in their infancy. Deep RL offers attractive solu-
tions to such problems, particularly its ability to represent vast state spaces - which these
problems are notorious for - and leverage experience for solving tasks. Recent applica-
tions in deep learning for PCB design have shown promise (Liao et al., 2020; Murphy,
2020), but the ones using RL (Crocker, 2021) still have plenty of room for improvement.

2

CHAPTER 1. INTRODUCTION

1.2 Aims and Objectives
Our goal is to create an Artificial Intelligence (AI) driven component placement engine
capable of generating high-quality solutions on unseen circuits. We break down the goal
into the following four objectives.

1. To assess the performance of a Reinforcement Learning (RL) constructive PCBplacer
by developing a circuit quality estimator and using it as the policy state encoder.

2. Formulate the iterative PCB component placement problem as an RL task.
3. To systematically design and evaluate the fundamental mechanisms of a single-

component iterative PCB placement environment, namely, action spaces, reward
signals and training algorithms.

4. To design and evaluate a multi-component RL setup for iterative PCB component
placement capable of learning generalisable behaviour.

1.3 Proposed Solution
This thesis focuses on methodologies for optimising the placement of components onto a
PCB using RL. We investigate the state-of-the-art RL placement methodologies (Mirho-
seini et al., 2021; Xu et al., 2022) in literature and propose a novel MDP formulation for
iterative placement. In our formulation, each component is treated as an autonomous
system capable of perceiving its surroundings, and with knowledge of the target aims to
learn policies that optimally co-locate it within a circuit. We investigate the mechanics of
our formulation in constrained single-component environments using policy optimisation
and actor-critic methods. These findings are then adapted to a multi-component setup,
allowing for diverse and consistent data collection. Under the guidance of an adaptive re-
ward signal, we attempt to learn general policies from scratch without expert knowledge,
capable of optimising circuits not encountered during training. The resulting methodol-
ogy is evaluated regarding post-routing wirelength on unseen circuits alongside an open
vanilla implementation of Simulated Annealing (SA) (Holtz et al., 2020; Merrill, 2021). The
latter has proven highly effective for placing circuits with typical component sizes in PCBs
(Cohoon et al., 1991; Kirkpatrick et al., 1983) and has achieved notable commercial suc-
cess (Sechen and Sangiovanni-Vincentelli, 1985). Our results suggest that leveraging ex-
perience yields a higher quality layouts with up to 21% lower post-routing wirelength. In
studying this problem, we collect a set of 30 circuits from real-world applications due to
the absence of a public dataset suitable for PCB physical design.

3

CHAPTER 1. INTRODUCTION

1.4 Document Structure
This thesis is divided into six chapters, including this introductory chapter.
Chapter 2 describes elementary concepts fromElectronicDesignAutomation (EDA),Machine
Learning (ML) and Reinforcement Learning (RL), all of which are fundamental to under-
standing the work present in this thesis.
Chapter 3 surveys seminal works in PCB and IC physical design culminating in the ap-
plication of ML to EDA processes. We identify the state-of-the-art while showing the
revolutionary potential of this technology within EDA.
Chapter 4 contains our methodology split into three sections. Objectives two and three
are tackled simultaneously in this chapter’s second section. We document methods and
describe the experimental setups of all tests carried out.
Chapter 5 follows an identical flow and presents the experimental results. These are ac-
companied by an evaluation against Simulated Annealing (SA) and an analysis of learned
behaviour. The following discussion provides an ML and EDA perspective of the work.
Chapter 6 concludes this thesis by outlining our contributions, limitations of our work
and potential avenues for future research.
Appendix A thoroughly describes the selection of toolchains, modifications performed
and experimental setup considerations.
Appendix B provides a complete description of the datasets used in this thesis. For ran-
domly generated datasets, the settings are provided.

Appendix C provide supplementary experiments to understand parameter relationships
and make data-driven decisions.
Appendix D contains additional background information.
Appendix E contains machine and detailed experiment timing information.

4

2 Background

PCB component placement is at least an NPC problem (Garey et al., 1976) and an optimal
solution NPC problem can neither be attained in polynomial time nor verified because no
known method exists. The placement task accepts a circuit netlist describing the logical
representation of the circuit accompanied by geometrical information of the individual
components (e.g. width and height) (Kaeslin, 2008, p. 40). The placement process is con-
cerned with identifying the best spatial location and orientation for all the components
given solution constraints (e.g. no overlaps) and optimisation goals (e.g. minimised wire-
length) (Kahng et al., 2022, p. 95). Since we cannot verify a solution, a cost function that
combines overlap and wirelength is often defined and minimised.

This section presents background information that helps the reader understand the
work and contributions of this thesis. It introduces the field of EDA, specifically focusing
on physical design, and highlights the similarities between PCB and IC design processes.
Since the circuit netlist naturally exhibits graph representation, we introduce Graph Neu-
ral Networks (GNNs) as automatic feature extraction methods. Lastly, it offers a concise
overview of RL, the method of choice for solving placement-related combinatorial opti-
misation tasks, covering basic concepts to advanced algorithms.

2.1 Electronic Design Automation
The ElectronicDesignAutomation (EDA) industry develops software to support engineers
in creating new electronic designs. Due to the high complexity of modern designs, EDA
touches almost every aspect of the design flow, from specification to fabrication. EDA
addresses designers’ needs at multiple levels of the electronic system hierarchy, including
ICs, Field Programmable Gate Arrays (FPGAs), Multi Chip Modules (MCMs), and PCBs.

ICs comprise many miniature electronic components, primarily transistors, built into
a monolithic semiconductor substrate via a photolithographic process. Many circuits are
manufactured onto a circular silicon wafer before slicing into individual bare dies ranging
from the size of a pinhead to a large postage stamp. Dies may be encapsulated into a

5

CHAPTER 2. BACKGROUND

plastic or ceramic package before being soldered onto a PCB (Kaeslin, 2008). MCMs are
a collection of ICs and other components aggregated onto a single substrate while FPGAs
are specialised programmable ICs that can implement arbitrary logic circuits.

2.2 IC Design Process
Very Large Scale Integration (VLSI) circuits are highly complex. The design process is sep-
arated into distinct steps as outlined by the flowchart to the left in Figure 2.1. The initial
phases contribute towards the overall system functionality and logical design and are car-
ried out at a high level of abstraction. Later steps take place at a lower level of abstraction,
where software tools use geometrical information about the constituent devices to layout
the circuits and perform interconnection between transistors and modules. Finally, the
focus shifts towards verifying correct logical operation, deriving electrical properties and
analysing their effect on performance (speed, power), reliability and manufacturing yield.

Figure 2.1: Key steps in VLSI circuit design flowwith an emphasis on phys-ical design (Kahng et al., 2022, p. 6).

6

CHAPTER 2. BACKGROUND

On the left of Figure 2.1, the steps of the VLSI design flow are illustrated with a focus
on the physical design on the right. The IC physical design process inspires most of the
work carried out in this dissertation.
2.2.1 Design Flow
The design flow is a set of steps that allows a team of designers to progress from speci-
fications to a fabricated IC. The product specifications are defined by bringing together
designers, product marketers, and managers to establish high-level requirements of the
product in terms of functionality, manufacturing and performance. These goals are con-
verted to architectural specifications that outline the main system components and how
they will be brought together. The engineering team then performs functional and logic
design and uses test benches to verify the correct operation. The following circuit de-
sign phase consists of synthesis that converts the high-level functional description (e.g.
Verilog) into basic circuit elements (logic gates and transistors) described by a netlist. The
beginning of physical design is marked by the instantiation of all design elements in their
geometric representation from the synthesised netlists. Partitioning and floorplanning
place large clusters of transistors and Intellectual Property (IP) subsystems while optimis-
ing for wirelength, routability and other performance metrics. Placement fixes the size
of all macros and standard cells and assigns each to a spatial location on the chip. Rout-
ing connections are made using metal layers typically running above the standard cells.
The physical design process generates a set of layouts and manufacturing specifications
that require verification. Following verification, the chip is said to tape out and is sent for
fabrication. The fabrication process uses circular wafers from pure silicon and photolitho-
graphic masks to etch successive patterns onto a silicon wafer. Chemical processes follow
to gradually build the chips layer upon layer. After fabrication, each chip on the wafer is
individually tested, and the functional ones are packaged for placement onto a PCB.

So far, we have presented an overview of the IC design process. The upcoming sec-
tions describe the individual steps of the physical design process as illustrated by the right
flowchart in Figure 2.1. A simplified view of the objective is to minimise the total wire-
length since this directly correlates to Power Performance and Area (PPA). It is a crucial
step as it impacts circuit performance, area, reliability, power, and manufacturing yield.
2.2.1.1 Partitioning and Floorplanning
The synthesised netlist serves as the circuit description for physical design. It may option-
ally be partitioned if the netlist is large or comprises macros. This is done by clustering
groups of transistors or standard cells into soft cells (clusters of defined area and variable

7

CHAPTER 2. BACKGROUND

aspect ratio). The soft and hard cells are used in the next step of floorplanning. Floor-
planning is responsible for laying out all the macros and clusters of standard cells in a way
that minimises area and maximises performance. The latter is quantified by estimation of
wirelength and results in a placement that reduces connection length between modules.
The floorplanning step identifies all parameters pertaining to cell dimensions and legal
assignment on the chip canvas. The quality of a floorplan can significantly influence the
performance of subsequent steps.
2.2.1.2 Placement
Placement is the process of placing each cell and macro onto the chip canvas while hav-
ing some performance objectives related to PPA and constraints such as reduced overlap
or an upper bound on a specific parameter. Historically placement algorithms can be
categorised into four distinct sections, partition based, meta-heuristic (black-box optimi-
sation), mixed and analytical. Placers are discussed thoroughly in the section 3.2. Place-
ment is typically divided into two stages: global and detailed. Global placement involves
finding a rough placement for all the transistors and macros. Since the result of global
placement may contain overlap, in detailed placement, the placement of the elements is
altered slightly to reduce the wirelength further and obtain a layout without any overlap.
2.2.1.3 Routing
Routing takes place after placement and determines the paths connecting all the circuit el-
ements. This process has some objectives, such as achieving 100% routability and wiring
all points in the circuit. Other objectives may include reducing the overall wirelength and
achieving a certain wirelength for critical nets to satisfy the timing budget. The latter is
vital in modern circuits since a worse timing budget leads to either incorrect functioning
of the IC or derating to a lower speed grade. Routing is split into distinct steps starting
with the clock network and followed by a two-stage signal routing, global and detailed.

In digital circuits the clock signal is considered the most critical signal. It is often as-
signed its routing network so it can be separately optimised and has less influence from
logic signals. Routing clock signals and circuits placed in its path (e.g. gated buffers) is
prioritised and performed prior to routing the remainder of the circuits.

Global routing partitions the placed layout into tiles and allocates nets to tile-to-tile
paths. Routing capacity is associated with each path, and nets are assigned without ex-
ceeding the capacity. Critical nets may be weighted such that they have a higher contri-
bution in terms of capacity. Detailed routing is responsible for making the individual con-
necting traces and is considered the most challenging part (Khailany et al., 2020). Static

8

CHAPTER 2. BACKGROUND

timing analysis is run, including the routing loads placed on the logic gates. Depending on
the result, the design may iterate multiple times from logic synthesis, placement and rout-
ing. Subsequent synthesis and placement runs can be optimised for timing closure, where
critical paths are prioritised to minimise wire delay and meet the performance goals.

2.3 PCB Design Process
A PCB provides the structure for mounting and interconnecting circuit components (IPC,
2012). This section describes different categories of circuit components, the PCB struc-
ture and associated design flow.

2.3.1 Components
Components are the constituent devices that make up an electronic circuit and fall into
three categories, electronic, electromechanical, and mechanical components. Electronic
components influence the flow of electrons and can be further classified as passive (e.g.
resistors, capacitors and inductors) and active (e.g. semi-conductor devices). Electrome-
chanical components involve a combination of electrical and mechanical effects. An elec-
trical current may promote or inhibit mechanical movement, and vice versa, whereas a
mechanical action may promote or inhibit current flow. Examples include quartz crystals
and motors. Mechanical components do not explicitly influence an electrical signal and
include connectors and wires.
2.3.1.1 Component Packages
From a PCB layout perspective, circuit components can be categorised based on their
package type, either through-hole or Surface Mount Devices (SMDs). Through hole com-
ponents have rigid leads inserted into drilled holes on the PCB and are highly reliable due
to a robust mechanical connection (Preston, 2018). On the other hand, Surface mount
devices have flat co-planar leads, and the component lies flat on the PCB. A mechanical
connection is created between the component’s lead and the exposed pad on the board’s
surface. Since no holes are required, high-density PCBs are achievable both due to SMD
devices being smaller and since no drilling is involved, components can be laid on both
sides of the board. SMD devices have been widely adopted due to their lower cost and
smaller size and are generally more amenable to automated processes. Figure 2.2 illus-
trates double-sided component placement and depicts various packages adopted by the
industry optimised for different applications such as density, cost and ease of soldering.

9

CHAPTER 2. BACKGROUND

Figure 2.2: Comparison of through-hole and surface mount package tech-nologies (IPC, 2012).
2.3.1.2 Symbols and Footprints
Every component has a schematic symbol and an associated footprint. The schematic
symbol defines the function of the components and communicates its interface to the
user and the Computer Aided Design (CAD) tool. The footprint defines the geometrical
representation of the component in the appropriate physical dimensions, orientation and
outline of the package. In other words, symbols define the connectivity of a component,
and the footprints map this connectivity into geometrical patterns corresponding to the
physical dimensions of the actual component. Institute for Interconnecting and Packaging
Electronic Circuits (IPC) and American National Standards Institute (ANSI) standardise
schematic symbols and their footprints. However, the designer may also create custom
symbols and footprints that do not follow a standard.

2.3.2 PCB Structure
A PCB is a three-dimensional structure with alternating copper and insulating layers.
Traces (wires) are etched on copper layers, and connect component pins to form a closed
circuit for current to flow. Wires may propagate vertically across layers using a Vertical
Interconnect Access (VIA). Figure 2.3 illustrates a cross-section of a multi-layer PCB and
highlights the key elements. The top and bottom copper layers contain both component
pads and interconnecting traces (see Figure 2.4(b)) for routing signals and power. Internal
layers are strictly limited to wiring. In the simplest form, a PCB may have a single copper
layer. However, due to low cost, two layers are often used as a minimum. Advanced PCBs
contain many internal copper layers to increase the routing capacity for high-density lay-
outs. The key elements found on a PCB are:

• Pads are geometrical shapes etched onto the PCB’s top and bottom layers. They

10

CHAPTER 2. BACKGROUND

provide the regions onto which components pins are soldered.
• Traces are connections etched on the top, bottom and inner copper layers of a PCB.
They act as wires providing a connection between pads.

• VIA are vertical holes in the PCB that provide an electrical connection between
layers. That is, a trace on the top layer can bridge to another layer through a VIA.

Figure 2.3: Cross-section of a Printed Circuit Board (PCB) (Oskay andSchlaepfer, 2022, p. 16).
Figure 2.4 illustrates a PCB in KiCad (Bautista et al., 2022) software. Figure 2.4(a)

depicts the placed circuit in the layout tool. The white lines make up the ratsnest which
communicates the pins that need to be connected with traces. Figure 2.4(b) shows the
routed circuit, with red and green traces being wires on the top and bottom layers, re-
spectively. Notice further that the VIA connects both layers. Figures 2.4(c) and 2.4(d)
depicts a three-dimensional render of the PCB respectively from the top and bottom.

2.3.3 Design Flow
The design of an electronic system can be divided into five stages: specifications, schematic
capture, physical design, manufacturing and assembly, and testing. A project begins with
high-level requirements generated by understanding the product’s market fit, customers’
needs, and technological possibilities and capabilities. The resulting requirements may in-
clude features, certifications, mechanical or power constraints, and cost considerations.
Based on these high-level requirements, engineers design electronic circuits that fulfil the

11

CHAPTER 2. BACKGROUND

(a) Placed PCB (b) Placed and Routed PCB

(c) Top view of 3D rendered PCB (d) Bottom view of 3D rendered PCB
Figure 2.4: Illustration of placed and routed circuits alongside their corre-sponding 3D render in the KiCad (Bautista et al., 2022) design software.

design criteria. This process involves identifying the necessary components, considering
availability, price, and performance, and creating a schematic. The schematic is a graph-
ical representation of the electronic design, displaying component symbols and their in-
terconnections. It communicates the design visually, and a netlist can be automatically
generated. The circuit can then be simulated or prototyped to verify that it operates as
intended. These tasks minimise the risk of developing a non-functional electronic system.

PCB physical design starts by importing the netlist and arbitrarily placing all the com-
ponent footprints on the board. There is no standard way to perform the layout process,
and every engineer tends to do it differently. However, it is generally understood that
good component placement is crucial for routability and overall performance (Jones and
Harris, 2004). For advanced PCBs, the performance of an electronic system is highly de-
pendent on the PCB layout and, if not done properly, may result in a system that fails
compliance testing or exhibit non-functional sections. After the PCB has been placed
and routed, a Design Rule Check (DRC) checks for layout errors and manufacturing con-
straints. The manufacturing process of PCB involves a series of lithographic and chemical
procedures and is rarely done in-house. Many PCBmanufacturers offer assembly services
where they solder either all or a portion of the components. Alternatively, engineers may
also assemble prototype units manually. The final stage involves testing, which aims to
identify bugs and verify that the desired performance has been achieved.

12

CHAPTER 2. BACKGROUND

2.4 Graph Neural Networks
The language of graph structures elegantly captures numerous natural and artificial pat-
terns Veličković (2023). This is especially true for circuit netlists in EDA as graphs naturally
capture structural relationships and dependencies. This section introduces GNNs that op-
erate on non-Euclidean graph data and will be utilised in the thesis to extract low-level
features directly from circuit netlists.

A graph denoted by G = (V, E) consists of a set of nodes (vertices) V and a set of
edges E. Directed edges are comprised of pairs of nodes in the form of (v, w), which
indicate that an edge connects node v to w. Undirected edges are denoted by {v, w}.

2.4.1 Graph Neural Networks
Many authors emphasise the success of automatic feature extraction (Gilmer et al., 2017;
Wu et al., 2021), concluding that better representations are obtained over handcrafted
feature engineering and in significantly less time. Wu et al. (2021)’s comprehensive survey
notes that GNNs, compared to other feature extraction methods such as Convolutional
Neural Networks (CNNs), have three challenges:

1. Graph data is irregular, having a variable number of nodes, each with a different
amount of connections to its neighbours.

2. ML algorithms assume data instances are independent of each other, which does
not hold for graph data because nodes are related to their neighbours via edges.

3. Due to the isomorphic properties of graphs, methods that operate on graph data
need to be permutation invariant.

GNNs are categorised into four classes (Wu et al., 2021). During their inception, re-
current neural networks were used to recursively update the node features within a graph
as a function of their neighbours until an equilibrium state was achieved (Gori et al., 2005;
Sperduti and Starita, 1997). Graph Convolution Networks (GCNs), on the other hand, in-
troduced a message-passing mechanism inspired by CNNs, which executes localised op-
erations without recurrent connections (Bronstein et al., 2017). These GCNs can be fur-
ther divided into spectral approaches (Bruna et al., 2013) and spatial approaches (Micheli,
2009). Building upon the concept of message passing, graph autoencoders were devel-
oped (Kipf and Welling, 2016; Pan et al., 2018). These models convert the graph into an
intermediate representation and then reconstruct it, aiming to learn unsupervised repre-

13

CHAPTER 2. BACKGROUND

sentations. Lastly, spatial-temporal GNNs are designed to handle data with both spatial
and temporal dimensions.

The upcoming sub-section presents the Message Passing Neural Network (MPNN)
(Gilmer et al., 2017), a general framework that fits many proposed ML layers that operate
graph data. Subsequent sub-sections briefly describe graph convolution networks and
masked attention later used for learning compressed representations of circuit netlists.
2.4.1.1 Message Passing Layer
Gilmer et al. (2017) proposed the MPNN as a general framework for supervised learning
directly from graph data in a permutation-invariant manner. The framework is designed
to handle models that operate on uni-directed graphs and consists of two stages: an
aggregation step and an update step. In the aggregation step, neighbour nodes transmit
messages along graph edges, optionally conditioning the node data. The update step
utilises the resulting embedding of the neighbour nodes to update the central node.

Formally, the MPNN layer accepts a graph G with node and edge attributes xv and
evw respectively. A typical forward pass is comprised of T time steps, each performing an
individual aggregate and update, respectively represented by the message function, Mt

and vertex updated function Ut.
mt+1

v = ∑
w∈N(v)

Mt(ht
v, ht

w, evw) (2.1)

ht+1
v = Ut(ht

v, mt+1
v) (2.2)

Equation 2.1 illustrates the aggregate phase, where messages mt+1
v are computed as a

function of the node v, it’s neighbours N(v), and attributes, evw linking them. Equation 2.2
describes the update phase where the hidden states ht

v, and current node v are updated
based on the messages mt+1

v . Equation 2.3 captures an optional readout phase, which
collapses the whole graph onto a single feature vector using a readout function R.

y = R(hT
v |v ∈ G) (2.3)

The MPNN framework enables performing classification or prediction tasks on indi-
vidual nodes and testing for the existence of links between nodes. Additionally, when
a separate readout function is defined, the graph is collapsed on a single feature vector,
which can subsequently be used for graph-level prediction tasks.

14

CHAPTER 2. BACKGROUND

Figure 2.5: The architecture of a GAT layer showing key components andcomputation of the attention between two nodes.
2.4.1.2 Graph Convolutional Networks
As mentioned earlier, GCNs can be classified into spectral and spatial-based approaches.
Spectral approaches build upon the seminal work of Bruna et al. (2013) and perform con-
volutions based on spectral graph theory or its derived approximations. Subsequent stud-
ies by Henaff et al. (2015), Defferrard et al. (2016), and Kipf and Welling (2017) have fur-
ther extended this concept. In contrast, spatial methods draw inspiration from traditional
CNNs and define graph convolutions through information propagation. Spatial GNNs
were initially introduced by Micheli (2009), and despite not achieving immediate success,
subsequent works by Atwood and Towsley (2016), Niepert et al. (2016), and Gilmer et al.
(2017) have reignited interest in spatial GNNs.
2.4.1.3 Attention Mechanism in GNNs
Figure 2.5 illustrates the topology of a Graph Attention Network (GAT), which augments a
spatial GNN with masked self-attention (Veličković et al., 2017). Equation 2.4 mathemat-
ically captures the computation of the attention coefficient where αij is the normalised
attention coefficient between nodes i and j, and W is a learnable weight that transforms
the original node embeddings hi and hj to Whi and Whj. The attention co-efficient is
yielded after propagating through a Leaky ReLU and softmax activations. Notice that the
original embeddings hi and hj remain unchanged in this operation.

αij =
eLeakyReLU(Wa[Whi |Whj])

∑k∈N(i) eLeakyReLU(Wa[Whi |Whk])
(2.4)

Equation 2.5 shows the convolution operation performed to update the node at-
tributes as a function of its neighbours and the attention coefficient, where, h′i and h′jare the updated node embeddings as a result of transforming them through a learnable

15

CHAPTER 2. BACKGROUND

weight W scaled by the attention coefficient αij. This is a weighted version of a vanilla
spatial GNN originally proposed by Micheli (2009).

h
′
i = σ(∑

j∈N(i)
αijW ∗ hj) (2.5)

2.5 Reinforcement Learning
RL is a type of machine learning where an agent learns to interact with an environment
to maximise cumulative rewards. It is a learning paradigm inspired by how humans and
animals learn through trial and error by receiving feedback from their surroundings. Un-
like supervised learning, which involves learning tasks from expert-labelled data, or unsu-
pervised learning, which focuses on identifying structures or clusters within historically
unlabelled data, RL stands out by learning through trial and error with the environment,
guided by a reward signal.

This section describes the RL paradigm and introduces relevant terminology. We ex-
plain the fundamental mathematical formulations and describe traditional approaches.
We also introduce Deep RL and contrast advanced algorithms employed in the thesis for
finding good policies that optimise the placement of components on a PCB.

2.5.1 Basics
In RL, the agent is an entity that learns by taking actions in the environment. The latter
represents the external context in which the agent operates and is typically defined by
a set of states and rules that govern the agent’s actions. The agent interacts with the
environment by observing its current state, selecting actions to alter it, and receiving
feedback as a reward. The goal of RL is for the agent to learn an optimal policy—a strategy
or set of rules—that guides its decision-making process. The policy determines the agent’s
actions in each state to maximise its expected long-term rewards.

Figure 2.6 illustrates the agent’s interaction with the environment. At a given time t,
the agent observes the environment and infers its state, St. Based on this information,
it employs its policy π to select an action At. The action is then applied in the environ-
ment, and the episode advances to the next timestep t + 1 where the agent observes the
updated state St+1 and is accompanied by a reward Rt+1 reflecting the its effectiveness.

16

CHAPTER 2. BACKGROUND

Figure 2.6: Agent-environment interaction in RL (Sutton and Barto, 2018,p. 48).
2.5.1.1 Terminology
This section provides essential definitions of terms used in problem formulation, algorithm
description, and learning policies in the RL field.

• The state, St fully describes the environment’s current condition. An observation,
Ot, is what the agent perceives and may contain a subset of the state information.
A fully observed state is one where the agent’s observation encompasses the state
entirely, and a partially observed state is one where the agent perceives a reduced
version of the state and may require extra information to infer the state.

• The agent’s set of valid actions is called the action space, and the agent’s action
sampled from it at timestep, t, is denoted by the random variable At. Action spaces
can be classified as either discrete or continuous. A discrete action space comprises
a finite set of possible actions, while a continuous action space involves real-valued
vectors typically bounded by maximum and minimum values.

• The reward signal, Rt, provides feedback to the agent based on its actions, indicating
the desired outcome and guiding it to learn optimal behaviour.

• An episode defines the timeframe for the agent’s interaction with the environment.
An RL task is classified as episodic if it has a terminal state and continuous otherwise.

• The return Gt, at timestep t is the expected sum of future rewards, starting from
the current state st until reaching a terminal state, when following a policy, π. A
distinction thusmust bemade between episodic and continuous episodes. Equation
2.6 illustrates how the return is computed for episodic tasks.

Gt = Rt+1 + Rt+2 + ...RT (2.6)
Continuous tasks do not have a terminal state; therefore, the expected return will
result in an infinite value. To overcome this limitation, a discount factor is intro-
duced, γ ∈ (0, 1], which places more emphasis on upcoming rewards. Notice that if

17

CHAPTER 2. BACKGROUND

gamma in Equation 2.7 has a value less than one, then the infinite sum has a finite
value as long as the reward is bounded.

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ...

=
∞

∑
k=0

γkRt+k+1
(2.7)

The value of γ is of particular importance. A value close to one tends to sum the
return over a more extensive sequence of future rewards. In terms of the behaviour
embodied by the policy, this will promote long-term decision-making. On the other
hand, a smaller value of gamma will lead to short-sightedness, where the agent will
seek actions that yield immediate reward.

2.5.1.2 Markov Decision Processes
An MDP is a formal probabilistic model (Sutton and Barto, 2018, p. 47) that represents
sequential decision-making in RL. It captures how actions affect the current and future
rewards and states. MDPs are an idealised version of the RL problem and formalise goal
achievement through interaction. In a finite MDP, there is a finite set of states, actions,
and rewards, and the randomvariables St and Rt have discrete probabilities. The dynamics
of an MDP are precisely defined in Equation 2.8:

p(s′, r|s, a) = Pr(St = s′, Rt = r|St−1 = s, At−1 = a)∀s′, s ∈ S, r ∈ R, a ∈ A(s) (2.8)
Where p(s′, r|s, a) is the probability of transitioning from the current state s taking

action a and ending up in state s′ receiving a reward r. Equation 2.9 shows that the prob-
ability of transitioning to state s′ and gaining a reward r is conditional on the previous
state s and action a.

∑
s′∈S

∑
r∈R

p(s′, r|s, a) = 1 (2.9)

2.5.2 The Bellman Equation
The Bellman equation (Sutton and Barto, 2018, p. 59) is a fundamental concept in RL that
characterises the value of a state in terms of the expected future rewards. It provides a
recursive relationship between the value of the current and successor states. The Bellman
Equation is provided by Equation 2.10 where Vπ(s) represents the value of state s under
policy π, indicating the expected cumulative reward, π(a|s) represents the probability of

18

CHAPTER 2. BACKGROUND

selecting action a in state s according to the policy π, p(r, s′|s, a) is the state transition
probability quantifying the likelihood of transitioning to state s′ and receiving reward r
for selecting action a in state s and γ is a discount factor.

Vπ(s) = ∑
a

π(a|s) ∑
r∈R

∑
s′∈S

p(r, s′|s, a)(r + γVπ(s′)) (2.10)

2.5.3 Fundamentals RL Algorithms
RL algorithms can be categorised into two main types: model-based and model-free.
Model-based RL relies on building an internal model of the environment to plan and make
decisions, while model-free RL directly learns a policy or value function from interactions
with the environment without explicitly modelling its dynamics. Model-free RL does not
assume knowledge of the underlying model, thus making it suitable for highly complex
tasks such as placement. Hence, this thesis focuses on model-free RL.
2.5.3.1 Value-based Methods and Policy Optimisation
Value-based methods focus on estimating the value function, which represents the ex-
pected cumulative reward from a particular state or state-action pair. These methods
aim to learn the optimal value function by iteratively updating value estimates using
techniques like Q-learning (Watkins and Dayan, 1992) or State Action Reward State Ac-
tion (SARSA) (Sutton andBarto, 2018, p. 129). The learned value function guides decision-
making by selecting actions with the highest value. Value-based methods are effective in
high-dimensional or continuous state and action spaces but can suffer from convergence
issues and can be sensitive to exploration strategies. On the other hand, policy optimi-
sation methods aim to directly learn an optimal policy that maps states to actions with-
out explicitly estimating value functions. These methods optimise the policy parameters
using methods such as REINFORCE (Sutton et al., 1999). Policy optimisation methods
can handle discrete and continuous action spaces and directly optimise complex policies.
However, they may require a large number of samples for convergence and can be more
computationally expensive than value-based methods.
2.5.3.2 On-policy and Off-policy
On-policy and off-policy are two distinct RL algorithm classes that differ in how they learn
from interaction data. On-policy algorithms, such as SARSA (Sutton and Barto, 2018,
p. 129), update their policy based on the experiences gathered by following the current

19

CHAPTER 2. BACKGROUND

policy. In other words, the same policy being evaluated and improved is used for data col-
lection. By contrast, off-policy algorithms such as Q-learning (Watkins and Dayan, 1992),
learn from data collected by following a different behaviour policy than the one being
improved. They use a separate target policy for evaluation and a behaviour policy for ex-
ploration. This decoupling of the target and behaviour policies allows for more efficient
exploration and learning from a broader range of experiences. Off-policy algorithms have
advantages in terms of data efficiency and stability since they can make use of historical
data collected by any behaviour policy.
2.5.3.3 Exploration and Exploitation
Exploration-exploitation trade-offs play a crucial role in RL. Exploration refers to the agent
trying different actions to discover potentially better rewards. On the other hand, ex-
ploitation refers to the agent’s tendency to exploit actions already known to be rewarding.
Striking the right balance between exploration and exploitation is critical. One commonly
used exploration strategy is epsilon-greedy, where the agent selects the action with the
highest estimated Q-value most of the time (exploitation) but occasionally explores by
selecting a random action with a small probability (exploration). This ensures the agent
explores new actions while exploiting the ones with the highest estimated value.

2.5.4 Deep Reinforcement Learning
Deep RL combines RL algorithms with deep neural networks to learn policies that rep-
resent MDPs and solve complex problems. An important advantage of employing neural
networks to represent RL policies is their ability to handle high-dimensional state spaces
and generalise to similar, unseen ones. RL algorithms, such as SARSA (Sutton and Barto,
2018, p. 129) and Q-learning (Watkins and Dayan, 1992) described in the previous sec-
tion, face challenges when dealing with large state spaces due to the curse of dimension-
ality. Deep RL provides a solution to this problem.

Deep Q Network (DQN) (Mnih et al., 2013) is a pioneering work in deep RL, as it
introduced an approach for integrating deep neural networks with Q-learning. In addition
to utilising deep neural networks to extract low-level features automatically, the authors
also introduced the concept of experience replay. This technique effectively mitigated
the impact of learning from correlated data and non-stationary distributions, resulting in
increased stability. The integration of deep neural networks, experience replay, and Q-
learning in DQN enabled the original authors to learn control policies for ATARI 2600
games directly from raw pixels, achieving superhuman performance.

20

CHAPTER 2. BACKGROUND

2.5.4.1 Advanced Policy Optimisation
Trust Region Policy Optimisation (TRPO) (Schulman et al., 2015) and Proximal Policy Op-
timisation (PPO) (Schulman et al., 2017) are advanced implementations of on-policy deep
RL algorithms. They offer an improvement over the vanilla implementation of policy gra-
dients (Sutton et al., 1999) and differ primarily by constraining changes to the policy for
a more controlled update.

TRPO aims to optimise policies by constraining the policy updates within a trust re-
gion. It iteratively maximises the expected return while staying within a specified maxi-
mum Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951) between the old and
new policies. This ensures that the updated policy does not deviate significantly from
the old policy. TRPO optimises a surrogate objective function that approximates the ex-
pected return while considering the trust region constraint. However, although it guar-
antees monotonic policy improvement, it can be computationally expensive due to the
need to solve a constrained optimisation problem.

On the other hand, PPO addresses the computational complexity of TRPO using a
more straightforward and efficient approach. PPO performs multiple epochs of mini-
batch updates, where the policy is optimised to maximise a clipped objective function.
The clipping mechanism constrains policy updates within a range, ensuring stability and
preventing policy divergence. PPO balances sample efficiency and ease of implementa-
tion, making it popular in practice.

2.5.5 Actor-Critic
Actor-Critic methods are a class of RL algorithms that combine elements of both value and
policy-based approaches. In these methods, an agent learns by simultaneously maintain-
ing two components: an actor and a critic. The actor is responsible for selecting actions
based on the current policy and directly interacts with the environment. It aims to learn a
policy that maximises the expected cumulative rewards over time. The critic is the value-
based component and learns to estimate the expected cumulative rewards from a given
state under the current policy. The critic provides feedback to the actor by evaluating the
quality of actions and states. By estimating the value function, the critic acts as a base-
line for assessing the performance of the actor’s chosen actions and helps to guide the
learning process. Advantage Actor Critic (A2C) (Mnih et al., 2016) is an early actor-critic
algorithm where the actor updates the policy based on the advantage function, repre-
senting the benefit of taking the action compared to the average action value.

21

CHAPTER 2. BACKGROUND

2.5.5.1 Advanced actor-critic algorithms
Deep Deterministic Policy Gradients (DDPG) (Lillicrap et al., 2015), its improvement Twin
Delayed Deep Deterministic Policy Gradients (TD3) (Fujimoto et al., 2018) and Soft Ac-
tor Critic (SAC) (Haarnoja et al., 2018) are advanced actor-critic algorithms. They build
upon the A2C (Mnih et al., 2016) method, introducing improvements in stability, sample
efficiency, and handling continuous action spaces.

DDPG combines the deterministic policy gradient algorithm with the idea of actor-
critic learning. DDPG employs an actor network to select continuous actions determin-
istically and a critic network to estimate the value function. The key enhancements of
DDPG over A2C include experience replay and target networks. Introducing an expe-
rience replay buffer for storing past experiences breaks the temporal correlations be-
tween consecutive samples, reducing the policy update variance and improving sample
efficiency. DDPG also introduces target networks for both the actor and critic that are
slowly updated with a soft update mechanism. This stabilises the learning process by pro-
viding more consistent target values for the critic and reducing the target’s sensitivity to
small parameter updates. TD3 (Fujimoto et al., 2018) improves upon the limitations of
DDPG by introducing three key features. First, it employs twin critic networks for clipped
double Q learning, effectively addressing the overestimation bias inherent to Q-Learning.
Secondly, noise is intentionally added to the target actions during training through a pro-
cess called target policy smoothing. This approach regularises the learning process and
reduces sensitivity to minor policy updates. Finally, instead of updating the policy af-
ter every step, TD3 utilises delayed policy updates, resulting in less frequent network
changes. This strategy helps mitigate overfitting and enhances overall stability.

Like DDPG and TD3, SAC is an RL algorithm designed for continuous action spaces.
SAC balances maximising expected return and exploration by leveraging off-policy learn-
ing, maximum entropy RL, and entropy regularisation. It achieves this by estimating the
entropy of the policy and adding an entropy regularisation term to the objective function.
Therefore, optimising a surrogate objective function maximises both the expected return
and search space exploration, yielding effective policies that exhibit diverse behaviour.

22

3 Literature Review

Academia (Gao et al., 2023; Lin et al., 2021; Lopera et al., 2021; Markov et al., 2015) and
industry (Agnesina et al., 2023; Ho et al., 2023a; Khailany et al., 2020) heavily research
tools for IC design because the production of larger semiconductors partly relies on a
pipeline of automated software tools. Contrastingly PCB physical design is still a pre-
dominantly manual task, and placement-related automation is primarily limited to meta-
heuristics (Ismail et al., 2012; Lee, 2003; Ning et al., 2020) that study niche applications.
Attempts to provide general placement solutions are not well studied in academic liter-
ature (Badriyah et al., 2017), and recent deep learning research needs robust problem
formulation (Crocker, 2021) and thus has plenty of room for improvement.

In this section, we will survey PCB literature and establish state-of-the-art placement
methods. Next, we will analyse the techniques used in IC physical design, limited to floor-
planning, global and detailed placement and understand why IC placement tools have ad-
vanced over the past 20 years while those related to PCB have remained largely stagnant.
Finally, we will briefly explore the rapidly increasing ML applications for EDA tasks and
zoom into key research that is using ML or RL to solve placement tasks.

3.1 PCB Placement
PCB physical design literature, may be classified into two categories: general solutions
that attempt to optimise the placement of components leading to overlap-free layouts
(Badriyah et al., 2017; Merrill, 2021) with minimised wirelength and particular solutions
that co-optimise particular problem parameters together with placement (Alexandridis
et al., 2017; Ismail et al., 2012; Ning et al., 2020). Black box optimisation methods are
widely applied in both categories because they offer the flexibility of defining complex
multi-objective functions, and problem sizes are sufficiently small. In this context, we
will investigate how parameters of interest are optimised and how conflicting ones are
handled. We will also study different ways of formulating the problem that can simplify
the problem by design.

23

CHAPTER 3. LITERATURE REVIEW

3.1.1 General Placement
Badriyah et al. (2017) implemented a complete solution for automated PCB layout, using
a Genetic Algorithm (GA) for component placement and Lee (1961) routing algorithm for
making wire connections between pins. For placement, each component’s spatial coor-
dinates and orientation were directly encoded in the chromosome as a vector of triplets.
The fitness function was comprised of a weighted sum across three terms: overlap, tidi-
ness and distance between high-power components. To create a new offspring, first, the
crossover operator is applied which swaps two components from the parents. The muta-
tion operator is subsequently invoked and randomly applies a perturbation to the chromo-
some. This results in an alteration of the components’ spatial coordinates and orientation.
For simple circuits, the authors demonstrated that their placement method could provide
a solution without overlap in an acceptable amount of time. The work is unique due to its
application to a PCB and the treatment of both placement and routing for general PCB
design tasks. However, it falls short in terms of contextual analysis and evaluation since
the authors only present wirelength values without any insight connecting to the result.
The latter is important since, unlike IC design, PCBs are not always constrained by layout
area and minimising wirelength in such cases may not be the primary goal.

3.1.2 Thermal-Aware PCB Placement
Extensive research has been conducted to optimise the components’ location on a PCB
for optimal thermal operating conditions. These endeavours are driven by circuit perfor-
mance and reliability in mission-critical applications such as automotive, aerospace and,
military and defence. Operating at a lower temperature reduces the risk of premature
component failure. Furthermore, transistors operating at a higher temperature are sub-
ject to longer signal propagation delays that may hinder operation. The problem has been
studied in convectively cooled PCBs Alexandridis et al. (2017); Ismail et al. (2012); Ning
et al. (2013, 2020), MCMs (Cheng et al., 2007; Lee, 2003).

Ismail et al. (2012) formulate the PCB component placement task as a multi-objective
optimisation problem that considers spatial placement, device junction temperature and
power-related parameters. A GA is used to optimise the fitness function comprised of a
linearly weighted sum of objectives. They argue that manually tuning the fitness function
is an iterative and time-consuming process, and even experts may struggle to find the
optimal combination. In response, a secondGAwas employed to overcome this limitation.
The inner loop generates candidate solutions and evaluates them with a weighted fitness
function whose weights are provided by the second GAwrapped around this process. For

24

CHAPTER 3. LITERATURE REVIEW

a circuit with 20 components and a population of 100 and 50 chromosomes for the inner
and outer loops respectively, they demonstrate an 11.2% improvement over a manually
tuned fitness function. The associated cost of the second GA results in triple the running
time, albeit reduced to double if the population of candidate solutions is halved and a 3%
deterioration in accuracy is tolerable.

The placement solutions presented so far used GAs to optimise placement and other
objectives. Alexandridis et al. (2017) generate PCB layouts optimised to have an overall
lower temperature. However, for searching the solution space, they use Comprehensive
Learning Particle Swarm Optimisation (CLPSO), a variant of Particle Swarm Optimisa-
tion (PSO) that is less likely to converge prematurely. This is done by decoupling the
velocity update of the particle solution from the global best position. The original au-
thors further note that CLPSO can optimise multi-modal objective functions better. The
advantage of PSO over GA is in terms of ergodicity or quicker exploration of the search
space, which was desirable for the authors since fitness evaluation used a Finite Element
Analysis (FEA) to solve for the steady-state temperature of the PCB in three dimensions.
A GA discards the less fit portion of the population every generation and, from a compu-
tation perspective, is more expensive than PSO.

The original authors evaluate CLPSO relative to PSO and a GA. The original authors
evaluated CLPSO relative to PSO and a GA, and over 20 runs, PSO variants exhibited
lower variance when minimising the overall component temperature. There was practi-
cally no difference between PSO and CLPSO. Minimising the average temperature re-
sulted in individual components operating outside the specified thermal region. As a re-
sult, the objective functionwas reformulated in a second test to optimise the temperature
relative to the maximum operating temperature. PSO variants were shown to optimise
the placement and distribute the temperature more evenly for the device’s optimal oper-
ating point. The work highlights that PSO variants were more suitable for the task due to
exhibiting smaller standard deviations while attaining statistically significant fitness im-
provements. They attribute the superiority of PSO variants over GAs to their ability to
optimise continuous problems. Furthermore, CLPSO was shown to handle multi-modal
objectives better than PSO.

The power of meta-heuristics lies in the flexibility of defining the objective function.
However, analytic techniques provide an alternative optimisationmethod and can be used
when the objective function is differentiable. In such scenarios, the objective function can
be optimised using standard techniques, often with a reduced running time. Lee (2003)
uses a force-directed algorithm based on the heat conduction analogy to perform thermal
placement. The process starts by initialising the circuit components onto an unbounded
substrate. Iteratively, each chip pushes its neighbours with force based on the heat con-

25

CHAPTER 3. LITERATURE REVIEW

duction analogy until the solution reaches thermal equilibrium, at which time convergence
would be attained.

3.1.3 PCB Placement for Power Modules
The complex electrical phenomena that arise from the sub-optimal layout in high-power
applications, such as power delivery systems in electric vehicles, directly influence effi-
ciency. From a PCB layout perspective, sub-optimal placement of high-power compo-
nents may deteriorate the power supply’s efficiency in the form of switching loss and
affect the dynamic behaviour, a study by Ning et al. (2013) suggested. The pressure to
minimise design size and increase integration may, in turn, increase coupling between
components resulting from the component being placed too close to critical circuit ele-
ments or current paths. This is exacerbated when board density increases due to having
multiple modules in parallel. In more technical terms, for a single converter, the parasitic
effects will increase the voltage overshoot leading to power loss. For a parallel converter,
the parasitic parameters must be balanced to ensure even power distribution between
several sources and a single load, thus reducing localised hot spots on the PCB a later
study by Ning et al. (2020) noted. As a result, the layout problem is formulated as a multi-
objective optimisation problem that optimises the layout to minimise the parasitic effects
and yield a legalised (Design Rule Violation (DRV) free) design. The model having the
lowest power loss and no overlap between components will be the ideal candidate.

According to Ning et al. (2013), a small number of handcrafted layouts (usually fewer
than 30) are created and evaluated in practice. Due to this limited sample size, it is difficult
to distinguish between the designs using any quality measure. Consequently, the main
drawbacks are limited options, human inconsistency, and time constraints. To overcome
these limitations, two GAs in cascade are used to automate the entire design flow com-
prised of placement and routing. The outer GA is for placement, and the inner GA is for
routing. After both loops have been completed and a legalised layout has been obtained,
the design is subject to evaluation. A proxy function that considers parasitics was adopted
for evaluation over FEA methods or theoretical calculations, thereby favouring computa-
tional time over accuracy. The chromosome encoding is inspired from Hatta et al. (1999),
and its constituent components are relative position as a sequence pair, orientation, and
gap distance. Rather than encoding the spatial coordinates, sequence pairs describe how
components are relatively placed subject to vertical and horizontal constraints. The ad-
vantage that arises is that every solution is free from overlap, and the placement solution
space is finite. A single-point crossover and mutation mechanisms are employed. An ex-
ception case is included when the crossover is defined within the sequence pair since it

26

CHAPTER 3. LITERATURE REVIEW

Figure 3.1: Evolution of IC placement tools (Hao et al., 2022).
may result in an incompatible chromosome. The authors claim that results were obtained
faster and with better fitness compared to manual handcrafted designs. Their final de-
signs were evaluated using the highly accurate FEA methods. They pictorially present
layout results but provide no empirical measurements other than fitness values.

3.2 Layout Techniques in IC Physical Design
Figure 3.1, proposed initially by Markov et al. (2015) and later updated by (Hao et al.,
2022), illustrates the historical progression of IC floorplanning and placement tools (As-
terisk denotes tools that have not been assigned a handle). It begins with partition-based
placers in the 1960s that leveraged techniques from graph theory and black-box optimi-
sation techniques (Kirkpatrick et al., 1983). In the 1980s, analytic placers were proposed,
but due to a lack of computational power, meta-heuristics (Sechen and Sangiovanni-
Vincentelli, 1985; Wang et al., 2000) dominated; however, they resurfaced in the early
2000s and were widely adopted due to their success on large netlists. At the time of
writing, non-linear analytic placers are the current state-of-the-art (Agnesina et al., 2023;
Cheng et al., 2019; Lin et al., 2021) in the literature; however, ML techniques are being
extensively studied in every aspect of the EDA process (Huang et al., 2021; Khailany et al.,
2020) showing potential to augment or replace particular tasks. This section briefly de-
scribes early placement techniques and reviews themechanisms attributed to the success
of the analytical placement.

3.2.1 Black Box Optimisation
Meta-heuristic algorithms were popular during the 1980s to mid-1990s when ICs con-
tained less than 100,000 cells (Markov et al., 2015). They were effective on small cir-

27

CHAPTER 3. LITERATURE REVIEW

cuits and even adopted by industry for commercial layouts (Sechen and Sangiovanni-
Vincentelli, 1986). However, these techniques did not scale to larger circuits and were
ultimately phased out. Since PCB layouts are orders of magnitude smaller, meta-heuristic
approaches may provide a competitive alternative for the component placement task.
3.2.1.1 Simulated Annealing
Kirkpatrick et al. (1983) introduced Simulated Annealing (SA) as a method for combinato-
rial optimisation. Their work thoroughly details the algorithm and discusses problem for-
mulations for IC physical layout problems relating to partitioning, component placement
and routing. This work laid the foundations for Timberwolf (Sechen and Sangiovanni-
Vincentelli, 1985) and Dragon2000 (Wang et al., 2000), both built around SA. The Tim-
berwolf suite of tools has been used in the industry. It consists of four software programs
for IC layout and routing. The two placement tools of interest for our work are the stan-
dard cell placement tool and the macro placement tool. The routing program and the
placement optimiser for gate arrays will be omitted from this discussion.

The standard cell placement tool is a mixed-size placer capable of optimising the cell
placement onto rows and columns, macros of varying sizes and input-output pads. The
cost function comprises the linear combination of approximate wirelength and overlap
sum computed from the circuit netlist, and the goal is to minimise its value. A random
placement provides the initial state from which a new state may be iteratively generated.
A typical cycle involves enumerating all cells, macros and pads and then drawing two
random numbers that will dictate the type of operation to be performed. For instance, if
both numbers represent an element of the same type (e.g. macro), the two are swapped.
Otherwise, an element-wise operation limited to the element selected by the first random
number is performed. If it corresponds to macros or pads, an orientation perturbation is
applied, and if it is a cell, it is randomly moved to a new location. The perturbations are
limited to the range in which they can be applied, and the region gradually decreases as
the temperature cools.

Macro/Custom placement optimisation optimises macro and custom cell placement.
The differences between the two lie in the former having known dimensions and aspect
ratio, whereas the latter has bounds placed on the aspect ratio that may be altered, giving
the tool additional freedom to adapt the area according to the needs of the problem.
Furthermore, the designer can fix the pins of custom cells or move around the boundary
as one of the perturbation steps of an annealing algorithm. In contrast with the previous
program, whitespace must be allocated to accommodate wiring; otherwise, the router
will be required to alter the placement or fail to find a solution. Interestingly, Sechen and

28

CHAPTER 3. LITERATURE REVIEW

Sangiovanni-Vincentelli (1985) evaluated this tool on a PCB placement task, reporting
a CPU time of 18 hours for placing a moderately complex 613-component circuit with
900 nets and 4000 pins. Subsequent routing tools managed to route 96% of the layout.
Compared to manual placement, they reported a duration four-month and 99% routing.

Dragon 2000 (Wang et al., 2000), a competitor of Timberwolf, takes a top-down ap-
proach toward placement. Identifying that SA is responsible for most of the running time,
they split the task into global and detailed placement. In global placement, a partitioning-
based placer recursively bisects the circuit into smaller subsections. During detailed place-
ment, the small sub-circuits are legalised and solved iteratively using a greedy heuristic.
Their results on ISPD98 (Alpert, 1998) and MCNC circuits (Yang, 1991) show an average
of 1.4% wirelength improvement over Timberwolf while requiring half the running time.
3.2.1.2 Genetic
Cohoon and Paris (1987) proposed Genie to solve the placement problem using a genetic
algorithm. They propose multiple direct encoding schemes for the chromosome. They
use a cut-paste-patch crossover technique comprised of passing and target parents. The
target parent chromosome is updated from the passing parent and then patched such that
the offspring yields a legal solution. Two mutation operations were defined and operated
by interchanging a pair of modules. The difference lies in the selection of the modules.
In one case, any two modules can be swapped, whilst in the other, only modules used
within a specific net may be used for interchange. The latter tends to have a less destruc-
tive effect on the global solution because of its localised effect. Their work was compared
against that of Kirkpatrick et al. (1983) on small layouts comprised of at most 50 macros
and showed a 2.5% average improvement in solution quality. However, they acknowl-
edged that Timberwolf (Sechen and Sangiovanni-Vincentelli, 1986) offered comparable
or better quality while requiring an order of magnitude less CPU time. This is exacer-
bated by the inconsistency observed on larger layouts, where the original authors noted
a 13% to 50% variation in solution quality relative to their baseline.

3.2.2 Analytic Placers
Analytical placement addresses the limitation of metaheuristics to scale to problem sizes
exceeding 100,000 elements (Markov et al., 2015). They stand out by defining a differen-
tiable objective function that at the very least has to capture wirelength and overlap in a
differentiable manner. The widely adopted Half Perimeter Wire Length (HPWL) (Spindler
and Johannes, 2007) is not differentiable and thus is replaced by approximations (Refer

29

CHAPTER 3. LITERATURE REVIEW

to Appendix D.3 for a comprehensive overview of net models). Various ways for min-
imising overlap are suggested. For instance, the earlier placers (Brenner and Struzyna,
2005; Kleinhans et al., 1991; Viswanathan and Chu, 2005) used a spreading technique to
spread out the cells and reduce overlap and congestion. However, this did not allow co-
optimisation along with wirelength and required alternating passes between wirelength
minimisation and legalisation. Thus, subsequent methods modelled cell placement as a
spring or electrostatics system where both wirelength and overlap could be simultane-
ously optimised (Kim and Markov, 2012; Lu et al., 2015a; Spindler et al., 2008). Analytic
placers achieve state-of-the-art performance in academic literature (Cheng et al., 2019;
Guo and Lin, 2022; Lin et al., 2021) and are also utilised in the industry because they
achieve the best placement quality for large-scale circuits.

The success of analytical placement in addressing scaling introduces new challenges.
Highly optimised placements can suffer from congestion and fail in subsequent routing
stages. Co-designing placement tools to address foreseeable problems are discussed in
this section after introducing quadratic and non-linear analytic placement techniques. We
will also discuss hierarchical approaches to address the intense computation demanded
by non-linear optimisation methods.
3.2.2.1 Quadratic Placers
Quadratic placement alternates between unconstrained wirelength minimisation and le-
galisation or spreading out the cells and reduce overlap. The wirelength minimisation
step optimises the layout for wirelength ignoring cell overlap. Overlap is reduced dur-
ing the legalisation step. Some models ignore wirelength degradation, while others make
wirelength / routability aware changes. Reducing density is done via combinational and
numerical techniques including Network flows (Brenner and Struzyna, 2005), estimation
of density gradients (Viswanathan and Chu, 2005) and full spreading (Kim et al., 2012a)

Partitioning quadratic placers take a divide-and-conquer approach, where both the
netlist and the layout area are recursively bisected. Constituent circuits are assigned to a
region. Gordian (Kleinhans et al., 1991) and BonnPlace (Brenner and Struzyna, 2005) are
examples of partitioning-based placers. These methods differ from a min-cut placement
(Agnihotri et al., 2003; Roy et al., 2005) in that the quadratic cost function is minimised
in each step. Global performance tends to suffer due to partitioning and is further prob-
lematic for mixed-size placement since they ignore module dimensions.

Force-directed placement is a particular quadratic placement where the netlist is mod-
elled as a system of springs. It involves three forces in the force-equilibrium equation. In
the spirit of Newton’s third law of motion, a spring force is used as the quadratic ap-

30

CHAPTER 3. LITERATURE REVIEW

proximation of wire length accompanied with a corresponding opposing hold force. A
density-based spreading force is also incorporated for an evening out cell density by
moving cells from high-density to low-density regions. Modern quadratic placers (Hu
and Marek-Sadowska, 2005) (Viswanathan and Chu, 2005) (Spindler et al., 2008) SimPL
and its derivatives (Kim et al., 2012a), MAPLE (Kim et al., 2012b), and ComPLx (Kim and
Markov, 2012) use the same concepts but differ in their modelling of the density force.
3.2.2.2 Non-linear Placers
Non-linear placers use non-linear optimisation techniques to find placement solutions in
non-convex search spaces. Wirelength and density are modelled using smooth approx-
imations, thus, their gradients can be computed analytically. The dominant wirelength
models include the Logarithm-Sum-Exponential (LSE) model (Naylor et al., 1998), and the
weighted-average model (Hsu et al., 2011), which provide a better approximation com-
pared to the quadratic estimate. Density models include the bell-shaped function (Naylor
et al., 1998), Helmholtz equation (Chan et al., 2005) and Gaussian equation (Chen et al.,
2008) . Density constraints imposed on the placement grid are integrated into the objec-
tive function via Lagrange relaxation and solved using conjugate gradient or Nesterov’s
method. The combined optimisation function is non-convex, contrasting with quadratic
and force-directed placement. The major drawback of non-linear placers is that non-
linear numerical optimisation requires long run times. APlace (Kahng and Wang, 2006)
and NTUplace3 (Chen et al., 2008) both used the bell-shaped density model, while mPL6
(Chan et al., 2007) used a Helmholtz smoothed density model. Multi-level cell clustering
segments the netlist and is often used tomitigate the long runtimes inherent to non-linear
placement techniques. However, this comes at the cost of quality degradation, which Lu
et al. (2015a) suggest is not negligible while proposing ePlace.

ePlace (Lu et al., 2015a) uses a weighted average wirelength model and models den-
sity as an electrostatic system. Every object in the netlist is modelled as an electric charge
leading to the density cost being the system’s potential energy and its gradient, the elec-
tric field. ePlace avoids quality loss by operating on the full netlist and does not perform
clustering. This novel approach brought an improvement over all the contemporary plac-
ers reporting reduced wirelength by as much as 7.13% and runtime by 3.05 times when
compared to the top placers BonnPlace (Brenner and Struzyna, 2005), NTUplace3 (Chen
et al., 2008), and MAPLE (Kim et al., 2012b). It failed to generate routable placements on
some benchmarks, such as SUPERBLUE12, due to routing hotspots imposing routing de-
mands twice the supply capacity. RePlAce (Cheng et al., 2019) mitigated this by adding a
routability term to the objective function. ePlace is a standard cell placer and cannot han-

31

CHAPTER 3. LITERATURE REVIEW

dle macros. For this reason, improved variations were created for mixed-sized placement
ePlace-MS (Lu et al., 2015b) and for three-dimensional ICs ePlace-3D (Lu et al., 2016).

DREAMPlace (Lin et al., 2021) is the current state-of-the-art analytic placer and casts
the analytic placement task as equivalent to neural network training. The authors note
that prior to their work, parallelisation was achieved by partitioning the netlist. With
such techniques, the achieved speedup was limited to 5x at the cost of quality degra-
dation ranging between 2 and 6% (Li et al., 2017; Lin et al., 2015). They also point out
the logistic problem: there are no standardised frameworks for solving placement tasks,
and current open-sourced tools are not well managed, resulting in a high development
overhead, ultimately limiting the systematic validation of novel algorithms. To mitigate
these issues, the authors draw analogies between neural network training and solving
the placement task, arguing that both processes perform non-linear optimisation. They
leverage PyTorch (Paszke et al., 2019), a widely adopted deep learning toolkit, to imple-
ment wirelength and density estimation functions. They report a 40x speedup without
quality degradation using GPU acceleration compared to RePlace (Cheng et al., 2019).

In the task of neural network training, every data instance in a dataset is fed to the
neural network and prediction error is accumulated. The task of training is to minimise
the prediction error with respect to the weights. The cell’s spatial coordinates (x,y) are
analogous to the weights, and every net in the netlist is analogous to a training data point.
The label is set to zero since we want to minimise the wirelength. Therefore the netlist
wirelength cost is obtained by doing a forward pass and accumulating the intermediate
wirelength. The backward pass computes the error gradient to be minimised. Density is
unrelated to the nets, and its cost corresponds to the regularisation term.

3.3 Machine Learning
ML is seeing broad adoption in EDA (Huang et al., 2021; Khailany et al., 2020; Lopera et al.,
2021) because processes have enormous configurability while the individual processes
are automated. This is illustrated in the comprehensive survey by Huang et al. (2021) that
describes applications in HLS, physical synthesis, physical layout, fabrication, testing and
verification. Khailany et al. (2020), takes an EDA perspective and highlights traditional
techniques, machine learning, and deep learning approaches with an applications focus.

Three categories are identified where ML can impact the EDA flow mainly, predict-
ing performance parameters, design space exploration, and AI-assisted workflows. This
thesis aims to contribute AI-assisted workflows for PCB placement and excluding hybrid
approaches (Ho et al., 2023b; Huang et al., 2019; Xu et al., 2022) this category is still in it

32

CHAPTER 3. LITERATURE REVIEW

is infancy (Crocker, 2021; Mirhoseini et al., 2021). Automatic feature extraction directly
from circuit netlists (Ren et al., 2022) also shows potential for improved generalisation
(Lopera et al., 2021; Ma et al., 2020; Wu et al., 2021) and is attractive to our work. We
see such supervised learning approaches applicable in state space encoding (Mirhoseini
et al., 2021) or tomore accurately gauge performance in the reward functions (Kirby et al.,
2019; Xie et al., 2021; Zhang et al., 2020). In the following section, we present seminal
works in the field of IC design focusing primarily on literature for learning general models
and task automation in hybrid and end-to-end flows with RL.

3.3.1 Performance Prediction
Ustun et al. (2020) highlight the inaccuracy of High Level Synthesis (HLS), or C-to-RTL
tools, to efficiently map mathematical operations to particular device resources (e.g. LUT,
DSP) on FPGA. This limitation arises from optimisations by synthesis tools that alter the
Register Transfer Level (RTL) code, albeit retaining functionality. They convert the math-
ematical description into a graph with nodes representing mathematical operations and
edges indicating data dependencies. Node attributes include FPGA resources and mathe-
matical precision, while edge attributes specify the cell responsible for performing a spe-
cific mathematical operation. Through inductive learning, they perform node prediction
to identify the target cell type and link prediction to cluster operations within a cell.

The microarchitecture of circuits parametrised RTL code or derived with high-level
tools, such asHLS, can be optimised for specific target applications. For example, Venkate-
san et al. (2019) uses Bayesian optimisation, XGBOOST (Chen and Guestrin, 2016), and
neural networks to navigate the design space for a CNN accelerator in a tractable manner.
Features such as the number of layers, layer shape and size are used to predict the pa-
rameters that influence micro-architectural features, eventually maximising performance
per area while minimising power.

Net2 (Xie et al., 2021) uses an altered GAT (Veličković et al., 2017) to estimate in-
dividual net lengths and identify the longest paths directly from a synthesised layout.
Interestingly, the original authors use nets as nodes with attributes including driver’s area
and fan in and fan out sizes of the current node and its neighbours. Each node is con-
nected with its fan-ins and fan-outs by edges representing common cells. Seven layouts
from ITC99 (Davidson, 1999) are synthesised in ten different ways and placed using com-
mercial tools, effectively yielding a dataset of 70 layouts. Training is performed on 60.
Accuracy-oriented implementation, Net2a achieves an overall 15% improvement com-
pared to prior work that uses GAT while obtaining a 94.6% accuracy on individual net
length estimation and 92.2% ROC AUC in classifying longest path length.

33

CHAPTER 3. LITERATURE REVIEW

Power estimation is a time-consuming pre-layout gate-level simulation. Zhou et al.
(2019) developed PRIMAL, a fast and accurate power estimation for Application Specific
Integrated Circuits (ASICs). MLP and CNN-based models were trained on test benches to
predict the power consumption of specific circuit blocks. The model did not generalise to
unseen layouts, but for the same design, it was capable of predicting power estimates un-
der workload conditions that were not experienced in training. GRANNITE (Zhang et al.,
2020) replaces the CNN with a GNN. They represent the circuit netlist as a graph using
register states and test inputs as node features and toggle rates derived from simulation
as labels. Compared against a commercial power estimator, it achieves a speed of 18.7x
at the cost of 5.5% prediction error on unseen circuit netlists.

Khailany et al. (2020) note that detailed routing is the most time-consuming step of
physical layout, and not easy to foresee whether a design will achieve timing closure with-
out DRVs. RouteNet (Xie et al., 2018) uses a CNN to predict routability and DRC hotspots
directly from post-placement layouts. Their results report similar accuracy to post-global
routing estimates, albeit requiring significantly less time. CongestionNet (Kirby et al.,
2019) takes this idea further by estimating congestion from the pre-placement circuit
netlist. They use GAT to parse the gate-level synthesized netlist and infer local routing
congestions from standard cell connectivity patterns and logic structure. The authors
note that their approach substantially outperforms traditional estimation techniques (Jin-
dal et al., 2010; Kudva et al., 2002) while requiring a running time in the order of seconds.
3.3.2 Learning Based Placers
Placement methodologies that embed ML or RL are discussed in this section. Those
employing RL are of particular interest, including the following works that influence the
methodologies proposed in this thesis. Goodfloorplan (Xu et al., 2022) partly uses GNNs
for automatic feature extraction and learns policies to override stochastic decision-making
of SA based placer. By contrast, Mirhoseini et al. (2021) propose a novel formulation of
the placement task and describe an end-to-end methodology for generating circuit place-
ment. The section will detail these methods, among other works relevant to this thesis.
3.3.2.1 Meta-heuristics Integrating an ML Predictor
Xu et al. (2022) proposed GoodFloorplan, taking a hybrid approach to floorplanning by
using an RL agent in conjunction with SA. In SA, random perturbations are applied to the
current state of a layout to obtain a new layout. Suppose the new layout is better, then
the new state is accepted. On the other hand, as a design space exploration method, if
the new state is worse, it may be accepted with a probability analogous to the cooling

34

CHAPTER 3. LITERATURE REVIEW

temperature of the annealing process. The original authors replace this mechanism with
an RL policy that decides whether or not the new state is accepted.

The iterative floorplanning problem is formulated as an MDP. The state space con-
sists of a floorplan solution represented as a sequence pair (Murata et al., 1996), the ac-
tion space specifies five unique perturbations, the transition probability is implicit since a
perturbation ensures a different next state, and a reward function that promotes improve-
ment. The objective function is based on the linear combination of the area consumed by
the floorplan and the HPWL. The agent is proportionally rewarded if an improvement is
made by moving from the current state to the new. If the objective degrades, a reward of
zero is assigned. Since different layouts have different placement costs, the reward given
to the agent is normalised against a baseline value equal to the cost of the initial state.
This allows the agent to learn across any number of different layouts.

The authors generate three synthetic datasets of 50, 100 and 200 blocks with a re-
spective amount of 50, 200 and 1000 nets. All blocks have integer dimensions; the smaller
two are assigned three pins, while the remaining have six pins at the centre of each block.
Themodel is evaluated on twoMCNC (Yang, 1991) benchmark circuits and three from the
GSRC dataset. An RL architecture is configured to accept features related to the circuit
netlist, layout quality and the SA process. These include the objective cost of the current
state, the minimum and the average cost to date, the objective cost of the new state, the
perturbed area and overlapping area related to the new state and the step number. These
features are concatenatedwith the processed netlist graph. Three successive GraphSAGE
(Hamilton et al., 2017) layers followed by a mean pooling layer compress a variable-sized
netlist into a fixed embedding for state encoding. The concatenated vector represents the
problem state used as input to an actor-critic (Mnih et al., 2016) architecture. The discrete
action space is comprised of five perturbation-style actions. Ablation tests showed that
the GCN reduced wirelength by 3.1% on average and larger datasets suggested better
generalisation with lower wirelength. Overall their methodology demonstrated a 3.7%
lower wirelength compared to three academic floorplanners.

Huang et al. (2019) argue that design complexity driven by the increased usage of IP
deteriorates routability as measured by the number of DRVs after detailed routing. Em-
pirical data presented by the authors suggested that the placement of the macros directly
impacted routability due to the complexity they encapsulate. To mitigate this issue, they
propose a CNN to predict routability and use it to guide a SA floorplanner. Themotivation
for predicting routability stems from a miscorrelation between global routing congestion
maps and resulting DRVs after detailed routing. Chan et al. (2017) and Chiou et al. (2016)
attribute this miscorrelation to complex design rules of advanced process nodes.

The input of a CNN consists of a macro density map, a pin density map (informa-
35

CHAPTER 3. LITERATURE REVIEW

tion about the available cells), and a connectivity map (nets connecting pins). VGG16
(Simonyan and Zisserman, 2014) is employed to predict routability via transfer learning
due to their small data set. A training data set is generated using a macro placer of their
own making based upon layouts provided in the ISPD2015 (Bustany et al., 2015) bench-
mark. Cadence Encounter is used to perform cell placement and routing. The number
of DRVs reported by the design rule checker is used as labels. Their prediction model is
trained over four circuits and evaluated on the unseen layout. The predictor was evalu-
ated and integrated into their baseline SA macro placer. Results demonstrated that, on
average, the placer generated 29% of layouts better than the top 1% in the dataset and
77% better than the top 10%. Additionally, an average wirelength reduction of 7.3% was
achieved and a decrease of 2.85 times in DRVs. However, a limitation of this study is that
the layouts considered for placement only contained six macros, significantly fewer than
those found in real-world designs. Therefore, whether this approach can scale to netlists
with hundreds or thousands of macros remains an open question.
3.3.2.2 Application in Direct Solutions
Mirhoseini et al. (2021) take a constructive approach toward floorplanning and train RL
policies for sequentially placing all macros in a netlist onto the chip canvas. The standard
cells in the netlist are first clustered using a hMETIS (Karypis et al., 1999) min-cut parti-
tioning technique. They are sorted by size in descending order so that larger macros are
placed first to decrease the risk of insufficient area as the floorplan fills up. The policy
accepts a compressed representation of the circuit netlist and metadata as the state. It
predicts the probability distribution of placing the current macro over the placement grid
without violating hard constraints. The original authors consider overlap a hard constraint
and thus eliminate it by design through an action masking process. After all the floorplan
is generated, commercial tools complete the layout the agent is rewarded in the terminal
state with the negative linear combination of HPWL, routing congestion and density.

In order to generalise to unseen designs, they focused on learning transferable repre-
sentations of chips. In other words, they used supervised learning to predict the quality of
partial layouts directly from the input netlist and metadata. An Edge-GNN processes the
netlist graph to produce two embeddings: a compressed representation of the netlist and
an embedding for the currentmacro to be placed. Metadata relating to the netlist and pro-
cess technology are linearly transformed to produce the third embedding. The concate-
nation of these three embeddings, followed by a fully connected neural network, makes
up the architecture of the reward predictor that shall be used to encode the policy. PPO
(Schulman et al., 2017) is used to optimise the parametrised policy whose compressed is

36

CHAPTER 3. LITERATURE REVIEW

scaled to the size of the layout region through a series of de-convolution layers.
A dataset of 10,000 placements was used for training the reward predictor gener-

ated equally from five Tensor Processing Unit (TPU) blocks. Each data point was derived
from training a policy using a different linear combination of the reward parameters and
random seed for diversity. Following successful regression performance, the prediction
layer is removed, and the resulting network encodes the large state space. The policy was
trained using a diverse dataset containing layouts with different macro types, sizes and
counts. With an increasing number of blocks, it was shown that the training takes longer,
but the zero-shot performance was consequently improved. The policy was trained over
20 blocks for evaluation and individually fine-tuned on the target set containing five TPU
blocks. When compared with a vanilla implementation of SA (Kirkpatrick et al., 1983), it
was shown that, on average, wirelength improves by 14.4% and congestion by 24.1%. In
another test, the results were compared to RePlace Cheng et al. (2019), where their meth-
ods yielded good metrics for timing and congestion on all five designs, whereas RePlace
(Cheng et al., 2019) failed on both in three out of five.

Encoding the state of the policy through an extra neural network adds an extra layer
of complexity, albeit presenting a novel way to make state space encoding more tractable
in problems with large state spaces. This work is innovative in this respect. However, it
falls short on multiple fronts. Firstly, it is difficult to reproduce and evaluate their work
since the authors used proprietary layouts and commercial tools despite the numerous
widely available benchmark problems. Additionally, details relating to the rationale behind
the methodology still need to be included, for instance, the action space encoding and
the efficacy of their novel edge-GNN. Secondly, testing performance could be improved
in several areas. For instance, no results described the regression of the state encoder.
Additionally, the generalisation claims are dubious when suggesting fine-tuning layouts
used for the evaluation.

3.4 Key Findings from Prior Work
Based on the literature reviewed in this section, we recognise the following key findings
that encourage our research:

• The IC and PCB physical design processes have similar design flows but differ sig-
nificantly in scale, layout density and optimisation goals. As a result, the techniques
employed in these processes have diverged. While IC design primarily adopts ana-
lytic techniques, PCB design focuses on placement co-optimisation using black-box

37

CHAPTER 3. LITERATURE REVIEW

optimisation methods. Moreover, ML is being applied predominantly in IC design,
driving ongoing research in this field.

• Literature shows the SA is highly effective (Kirkpatrick et al., 1983) for optimising
the circuit placements below 100,000 elements (Markov et al., 2015) while having
enjoyed commercial success Sechen and Sangiovanni-Vincentelli (1985);Wang et al.
(2000). While recent PCB literature often employs GA (Badriyah et al., 2017; Ismail
et al., 2012; Ning et al., 2013), it has been shown that GAs do not scale as well as
SA and are susceptible to high variability Cohoon and Paris (1987). Based on these
findings, we will adopt an open implementation of SA (Holtz et al., 2020; Merrill,
2021) as our baseline.

• Mirhoseini et al. (2021) proposes an innovative approach to the floorplanning task
using an end-to-end RL methodology. However, certain aspects of the method-
ology require further clarification and empirical testing. Additionally, the evalua-
tion employed in their study is notably weak, as suggested by Xu et al. (2022) and
demonstrated by Cheng et al. (2023). This study aims to investigate and adapt the
methodologies proposed by the original authors for PCB component placement and
seeks to provide empirical results in areas where the original work is lacking.

• The complexity of formulating differential cost functions is justified for placement in
IC design. Smaller problems such as floorplanning and PCB design are still amenable
to black-box optimisation, which offer flexibility and simplicity for proposing multi-
objective functions. However, these methods often rely on stochastic processes
and do not exhibit non-trivial placement techniques as they start from scratch every
time. RL is a precise tool for learning heuristics (sequences of moves) in problems
with large state spaces guided by complex non-differentiable cost functions. The
added benefit is that by leveraging experience, placements can be more quickly
optimised and achieve higher quality results that meet engineers’ expectations.

• Literature has yet to propose an RL iterative placement methodology, yet as wit-
nessed in this chapter, traditional methods almost ubiquitously take an iterative ap-
proach. From this perspective, the constructive methodology proposed by Mirho-
seini et al. (2021) is an outlier. This thesis acknowledges this gap and proposes a
novel RL formulation accompanied by two methodologies for solving the task.

38

4 Materials & Methods

This chapter introduces our approach to finding new learning-based methods for PCB
component placement. It is divided into four sections, following Figure 4.1. The first
section utilises a GNN for making graph-level predictions on circuit placement quality
and serves as the state encoder for an RL constructive placer. This approach is inspired
by recent AI research (Mirhoseini et al., 2021). Sections 4.2 and 4.3 explore an iterative
approach to component placement, focusing on the last three objectives. Section 4.2
formulates the problem as an RL task, analysing discrete and continuous action spaces,
reward signals, and four RL algorithms: TRPO, PPO, TD3 and SAC. Section 4.3 extends
the problem to a multi-component setup to develop general policies for optimising PCB
component placement.

Appendix A presents additional information relating to KiCad (Bautista et al., 2022),
the chosen PCB layout CAD software, automated placement (Holtz et al., 2020) and rout-
ing (Lin et al., 2020) tools, libraries and setups for working with PCB data.

Figure 4.1: Methodology chapter flow

39

CHAPTER 4. MATERIALS & METHODS

4.1 Constructive Placer
The constructive placementmethodologywas inspired by the innovativework carried out
byMirhoseini et al. (2021). The original authors reformulate the floorplanning problem as
an MDP and learn a policy to place macros onto the chip canvas achieving superhuman
performance. Since the PCB and floorplanning processes have some commonality, we
adapt the original authors’ methodology to our task.

The results quoted by Mirhoseini et al. (2021) are outstanding, but their methodol-
ogy needs to be improved on numerous fronts. Basic information is missing, such as the
node and edge features used in their input netlist graph. Key results are also not available
to support design decisions. For instance, the proposed edge-based GNN used in the
regression task of predicting circuit quality has no associated accuracy measurements.
Similarly, the RL policy architecture generates a compressed embedding scaled through
a series of de-convolutional neural networks for predicting the probability of placing the
current component on the discrete placement grid. While their source code is publicly
available, replicating their work is highly challenging (Cheng et al., 2023) because of pro-
prietary datasets and toolchains, despite well-established alternatives (Adya andMarkov,
2002; Adya et al., 2004). Based on these observations, we do not attempt to replicate
their methodology directly but instead use it as a guideline. We aim to replicate the basic
functionality in their method for our task while supporting critical design decisions with
experimental data as we develop the circuit quality predictor and the RL policy.

In this section, we describe our purpose-built environment for constructive place-
ment. Next, we describe our dataset derived from real-world circuits and accompanying
methods for arbitrarily generating large datasets for supervised learning regression tasks.
The circuit quality predictor will be presented next, which performs HPWL and post-
routing wirelength graph-level predictions from circuit netlists. Finally, the wirelength
predictor is embedded into the environment, encoding the policy’s state space. Policies
for constructively layout circuit components onto a PCB are obtained using RL.

4.1.1 Gym Environment
The OpenAI Gym (Brockman et al., 2016) environment for constructive PCB component
placement is introduced in this section, with its essential elements described in Figure 4.2.
The placement engine supplies the core functionality related to constructive placement.
It accepts the placement probabilities generated by the policy over the discretised layout
region, places the component and generates an updated circuit netlist graph. We will
describe this block in detail in Section 4.1.2. The placement quality predictor derived

40

CHAPTER 4. MATERIALS & METHODS

Figure 4.2: Constructive PCB placement environment. From the inputplacement probabilities, it masks occupied regions and places the compo-nent yielding an updated partial graph. The next observation is generated.
from a wirelength prediction model described in Section 4.1.4 maps the resulting netlist
graph onto a fixed size embedding, and together with some information about the next
component to place, the updated observation is returned.

The environment implements the three core methods for initialisation, resetting the
environment state, and periodic stepping until the terminal condition is reached. The
environment is provided with a .pcb file containing one or more netlist graphs and the
wirelength predictor model during the one-time initialisation. During the reset phase, a
netlist graph is arbitrarily selected and ordered in descending order by component area
or net density. The first component is randomly placed to prevent yielding an empty
observation. Ordering by area is assumed because it ensures that all the components can
be placed onto the layout region and minimises the risk that, at later stages, there would
be no room to place large components. Ordering by connection density prioritises the
placement of components associated with the most nets. The resulting partial graph is
propagated through the placement quality estimator, and together with the attributes of
the following component to place, an updated observation is generated.

External to the environment, the policy maps the observation to placement probabili-
ties over the discretised placement region, that by default, assumes a size of 20mmx20mm
together with a resolution of 1mm. The placement engine processes the input action,
places the component while observing the hard constraints mentioned earlier, and gen-
erates an updated partial graph representing the placement. The step method is repeat-
edly invoked until all elements in the ordered list are placed in the layout area. The agent
receives a negative reward based on the layout’s HPWL value at the terminal state and

41

CHAPTER 4. MATERIALS & METHODS

Num Observation Min Max Type
0 - (M-1) Compressed state based on netlist graph 0 np.inf np.float32M Normalised Width 0 1 np.float32M+1 Normalised Height 0 1 np.float32M + 2 Pin count 1 128 np.float32

Table 4.1: Observation space for the constructive placement environment.
zero rewards in the intermediate states.
4.1.1.1 Observation Space
The observation space in the PCB component placement is based on the formulation
proposed by Mirhoseini et al. (2021), albeit adapted for this specific task. It involves con-
verting a netlist graph into a fixed-sized embedding using supervised learning. The details
of this task can be found in Section 4.1.4. Together with information about the next com-
ponent to place, the observation is generated having the constituents are detailed in Table
4.1, where M is the size of the fixed embedding as identified in Section 5.1.1.2.
4.1.1.2 Action Space
The action space also follows the formulation by the original authors (Mirhoseini et al.,
2021). That is the policy predicts the placement probabilities over the discretised place-
ment region. For our default discretisation described earlier the policy will predict 400
placement probabilities. The action space is bounded over the interval [0, 1] and assumes
a datatype of np.float32.
4.1.1.3 Reward Signal
The reward signal is simplified by dropping the routability and congestion terms and
retaining only the HPWL approximation. Congestion is removed because our circuits
are less dense in comparison to the floorplans used by Mirhoseini et al. (2021), so co-
optimizing it with HPWL is not beneficial and makes the training process unnecessarily
more challenging. The same line of reasoning applies to the routability term. Credit is
assigned according to Equation 4.1, where rt is the reward at timestep t for transitioning
from st−1 to st and T corresponds to the number of episode steps equal to the number of
components in the netlist.

42

CHAPTER 4. MATERIALS & METHODS

rt =

−HPWL i f st = ST

0 otherwise
(4.1)

4.1.2 Placement Engine
The placement engine encompasses the functionality of the constructive placer, and its
basic features are described with two methods analogous to the reset and step methods
of a typical OpenAI Gym environment. Miscellaneous methods facilitate the computation
of performance metrics such as HPWL and interact with the operating system to save
optimised circuits and log information. The placer is written in C++ and exposed to Python
through Simplified Wrapper and Interface Generator (SWIG) as explained in A.5.

As mentioned, a placer object is initialised with a netlist graph representing a circuit.
It operates on a discretised layout region defined by the board size that, by default, as-
sumes a resolution of 1mm. Components rarely have integer values for their size, and
to eliminate the possibility of overlap during placement, the worst case is assumed by
increasing their size through rounding up. A single placement run starts by resetting the
placer’s state and ordering the netlist by component area in descending order. Next, the
first component is randomly placed on the canvas so that a non-empty observation may
be returned. The placer returns a subgraph corresponding to the placed circuit. The result
of the reset state is illustrated in Figure 4.3(a). In this context, a component is placed by
assigning values for position and orientation, followed by setting the locked flag indicating
that the component cannot be altered further. The component’s position corresponds to
its centroid. It can be assigned any (x,y) location on the discretised grid such that it does
not exceed the layout region or overlap with already placed components. These are hard
constraints enforced by design. The orientation can be assigned an angle in increments
of π

2
c radians and not exceeding 2πc radians or an equivalent value in degrees.
Outside of initialisation, the placer accepts an action generated by the policy, performs

some processing to extract the best location, updates the circuit state by placing the next
component and returns an observation corresponding to the placed subgraph. The action
comprises a two-dimensional array corresponding to the layout region and contains the
probability of placing a component at the specific discretised regions. Figure 4.3(b) is a
heatmap depicting a randomly generated action. The action grid is first masked to zero
out areas that would result in overlap or the component being placed outside the layout
region. Next, the component is slid over the legal parts of the masked action, summing
up the probabilities encapsulated by its area. The result is a new grid such as those pre-
sented in Figures 4.3(c) and 4.3(d). Notice that the scale no longer ranges between zero

43

CHAPTER 4. MATERIALS & METHODS

(a) Initial placement (b) Random action probabilities (c) Processed action - default

(d) Processed action - swapped (e) Updated placement (f) Final placement
Figure 4.3: Key depictions of the constructive placement process. Clock-wise, the graph description representing netlist is illustrated followed byits mapping onto action probabilities. Next are the processed actions fol-lowed by the updated and final placements.

and one but increases, and the component’s area limits its upper bound. Furthermore, it
can be observed that in both images, the value close to the layout’s border is zero, as well
as the region where there is the locked component from Figure 4.3(a). In actuality, one
or two grids may be generated depending on the aspect ratio of the component. If the
component has a non-uniform aspect ratio, two passes are made, considering the default
aspect ratio and its swapped alternative. In the case of Figures 4.3(c) and 4.3(d), the com-
ponent is a resistor of size 2x4mm. The grid positions with the highest value are selected
for the component’s position. Either way, four cases are considered, with a position cor-
responding to the highest value in their respective processed action grid, each associated
by an orientation that differs in 90-degree increments. The one that introduces the min-
imal HPWL is selected for placement. Figure 4.3(e) demonstrates the resistor placement
following this procedure. This process is repeated until the circuit has been completely
placed. Figure 4.3(f) demonstrates a randomly placed circuit comprising six elements.

44

CHAPTER 4. MATERIALS & METHODS

4.1.3 Dataset
Numerous published works (Badriyah et al., 2017; Cheng et al., 2022; Murphy, 2020)
propose a custom PCB dataset that is not made publicly available following their research.
To the best of our knowledge, no publicly available dataset suitable for PCB component
placement exists. Therefore, one was constructed using 30 real-world circuits. Emphasis
was placed on including various circuits, encompassing analogue, mixed-signal, and digital
designs, as each type exhibits distinct connectivity patterns. Additionally, the variety was
enhanced by considering the number of components, as well as their geometrical shape
and type. The details of this dataset are presented in Table B.1.

4.1.4 Wirelength Prediction
The automatic generation of large circuit netlist datasets from the base set of circuits
introduced in Section 4.1.3 is presented in this section. These datasets will include diverse
circuit topologies with optimised placements. They will be utilised for supervised learning
tasks, specifically for graph-level predictions of HPWL and post-routing wirelength. The
goal of developing this model, which predicts the layout quality is to encode the problem
state of a constructive placement policy as inspired from Mirhoseini et al. (2021).
4.1.4.1 Circuit Netlist
Since the netlist describes connections between component pins and we are considering
a component-level graph, some pre-processing is required. This involves pruning dupli-
cate edges that arise from different nets making separate connections across the same
nodes. Furthermore, power nets are also removed since these manifest themselves as
fully connected subgraphs that may impact the generalisation performance of the pre-
diction task. Such an assumption may be justified because often PCBs have entire planes
dedicated to power. As a result, a power net will manifest itself as a direct connection
between the component’s pin to the power plane through a VIA, effectively contributing
a negligible amount to the overall wirelength. A set of attributes accompanies each node,
including the component’s size, coordinate position, orientation and number of pins. No
edge attributes are used. The whole graph is associated with two target parameters, the
approximate HPWL and the routed wirelength. Table 4.2 lists all attributes and targets
and is accompanied by their data type and a detailed description. Appendix A.3 describes
the object representing circuit netlists.

45

CHAPTER 4. MATERIALS & METHODS

Feature Feature Type Datatype Description
size (x) Node attribute Double Component horizontal size (mm)size (y) Node attribute Double Component vertical size (mm)position (x) Node attribute Double Component horizontal position on PCB (mm)position (y) Node attribute Double Component vertical position on PCB (mm)orientation Node attribute Double Component orientation (degrees)pin count Node attribute Integer Number of component pinsHPWL Target Double Derived after optimising with SA-PCBRouted wirelength Target Double Derived after routing with PcbRouter.
Table 4.2: Description of the PCB netlist graph attributes, data type andassociated target parameters.

4.1.4.2 Dataset Generation
To generate the datasets, we randomly sample two sets of seed circuits from the dataset
proposed in Section 4.1.3 for training and unseen testing, respectively. The training dataset
will undergo a train/test split and will be exclusively used for training the model. The un-
seen test set will be solely used for evaluation, guaranteeing that the circuit topologies
employed are not variations but completely distinct. Generating the datasets follows the
procedure outlined by Mirhoseini et al. (2021), although we do not possess pre-trained
policies for optimising the individual circuit and instead utilise SA-PCB (Holtz et al., 2020).

Since the task of constructive placement lays out components incrementally onto the
layout region, the dataset will be comprised of netlist graphs that are partially complete
ranging from aminimum of two components to amaximum, equalling the number of com-
ponents in the layout. The generation flow is depicted in Figure 4.4. The process starts
with a set of n unique layouts (Table B.1) in .kicad_pcb file format, which is converted into
our internal graph representation and stored in a single .pcb file. The generated file is pro-
vided to the placer described in section 4.1.2, which randomly generates several partial
layouts saved individually in our custom format. Layouts are sampled from a categorial
distribution that favours layouts proportionately to their size. This biased sampling tech-
niquewas implemented to ensure that large layouts are sampledmore frequently than the
smaller layout and thus allow them to contribute to a more varied dataset. Furthermore,
since partial layouts are generated, sampling larger layouts more regularly will reduce the
number of small partial layouts in the dataset. A log file is created for each partial lay-
out, and the result is then converted back into .kicad_pcb file format and optimised with
SA_PCB. The number of iterations is sampled from an integer distribution bounded by the
number of components in the layout multiplied by a user-defined parameter. However,
an absolute lower bound of eight iterations and an upper bound of 2048 were enforced.

46

CHAPTER 4. MATERIALS & METHODS

Figure 4.4: Dataset generation strategy for wirelength prediction. From aset of n circuits, m partial layouts are arbitrarily generated and optimisedyielding varying lengthwise labels.
The resulting layout is saved, and the log file is updated with the placement result.

The performance metrics recorded are the approximate HPWL, overlap, and approxi-
mated RUDY congestion (Spindler and Johannes, 2007). Optionally the layouts are routed
with PcbRouter (Lin et al., 2020) to obtain the actual wirelength and the number of VIAs.
The routing step is made optional since the process is computationally intensive and may
require a running time in the order of hours or days, and the HPWL is a good approxima-
tion of the actual wirelength (Spindler and Johannes, 2007). When employed, the router
is driven hard to minimise the wirelength, with the following configurations: a high cost
was associated for VIA insertion, thus forcing it to route on a single layer when possible,

47

CHAPTER 4. MATERIALS & METHODS

and a rip-up-and-reroute strategy was employed to allow the router to remove wires in
congested regions and re-attempt making the connections to find a shorter wirelength.
As a final step, the log files and layouts optimised by simulated annealing are processed
to generate the dataset comprising the netlist graph, target wirelength metrics, and meta-
data. Table B.2 describes the constituent attributes of the dataset, while Table B.3 details
the configuration of the dataset generation script.

The random generation of partial layouts, placement optimisation and routing are par-
allelised to reduce the time to generate the dataset. The constituents are not deterministic
since parallelisation is performed at the operating system level. For repeatable perfor-
mance, it must be run single-threaded.
4.1.4.3 Neural Architecture
The architecture of the supervised learning model is presented in Figure 4.5. It accepts
a graph with an arbitrary number of nodes and an adjacency list. Depending on the tar-
get selected during training, graph level predictions for HPWL or routed wirelength are
yielded at the output. The input graph is propagated through several convolution lay-
ers, each transforming the nodes attributes as a function of their neighbours. The graph
is then collapsed into a single embedding comprised of the concatenation of the mean
and max pooling operations. The fixed-size embedding is then used as an input to a fully
connected MLP for prediction.

The graph-level wirelength prediction task is set up as a regression task. The dataset

Figure 4.5: Neural architecture for wirelength prediction. The topologycomprises graph layers for automatic feature extraction, pooling layers forreducing the graph to a fixed embedding, and linear layers for predictions.

48

CHAPTER 4. MATERIALS & METHODS

of 8192 samples is split into 70%:30% training and testing, respectively and set up us-
ing Pytorch Geometric (Fey and Lenssen, 2019) data loader. The latter facilitates the
handling and manipulation of variable-sized graph data. Table 4.2 describes the node at-
tributes used as input features and wirelength targets to be predicted. Since all attributes
span over an extensive range of values, they are normalised. Such operation reduces the
propagation of large error gradients that may result in unstable training (Bishop, 2016).

Since the dataset is generated with a strict lower bound of four iterations, this pre-
vented the generation of graph netlist with extremewirelength often arising from random
placement. Furthermore, since the target values were normalised, the squaring operation
would significantly reduce the magnitude of the error. For these reasons, Root Mean
Square Error (RMSE) loss function was selected because our dataset does not contain
outliers that can singlehandedly influence the loss value. The square root operation bal-
ances the squaring process and prevents minimal loss values.
4.1.4.4 Experimental Setup
Three graph layers are tested. GCN (Bruna et al., 2013) and GraphConv (Micheli, 2009)
were selected because they are architecturally different, with the former being derived
from spectral graph theory and the latter motivated by information propagation. The third
is GAT (Veličković et al., 2017) and was selected due to its ability to learn a method for
identifying the relative importance of a node’s neighbours through the attention mech-
anism. The optimal architecture for each graph layer is identified through 128 hyperpa-
rameter optimisation trials. The hyperparameters considered for optimisation and their
bounds are noted in Table 4.3, and the experiment flow is depicted in Figure 4.6. The
setup gauges the performance of each trial averaged over four consecutive runs outlined
in blue with distinct albeit deterministic seed values. Optuna (Akiba et al., 2019) with a
Hyperparameter Type Range
Learning rate Double 0.0001 - 0.001Batch size (2^n) Integer 5-8Graph convolutional layer type String GCN, GraphConv, GATNumber of graph convolutional layers Integer 1-4Graph convolutional layer embedding size Integer 16-256Graph convolutional layer activation function String tanh ReLUNumber of dense layers for the multi-layer perceptron Integer 1-4Multi-layer perceptron layer size Integer 16-256Multi-layer perceptron activation function String tanh, ReLU

Table 4.3: Optimisation criteria for wirelength prediction model.
49

CHAPTER 4. MATERIALS & METHODS

Figure 4.6: Procedure for optimising neural architecture and hyperparam-eters. m-trials are generated by Optuna’s TPE sampler (Bergstra et al.,2011), each setup is invoked n times and averaged.
Tree-structured Parzen Estimator (TPE) sampler (Bergstra et al., 2013, 2011) is used to
cleverly select hyperparameters guided by past performance.

4.1.5 Training and Experimental Setup
Due to the large and continuous action space, TRPO and PPO (Schulman et al., 2015,
2017) RL algorithms are used to learn a policy. The latter is also the training algorithm
chosen by Mirhoseini et al. (2021). The policy will map the embeddings generated by the
placement quality estimator and information about the next component to placement

50

CHAPTER 4. MATERIALS & METHODS

Parameter TRPO PPO Description
Learning rate 1e-3 3e-4 Learning rate for Adam optimiserOptimiser Adam Adam (Kingma and Ba, 2014) Adamsteps 2048 2048 Number of steps collected from a single rolloutbatch size 128 64 Minibatch size for gradient updates

epochs 10 10 Number of epochs for optimising the surrogateloss over the current dataset
train frequency 2048 2048 Frequency in steps at which the neural networkis updated (steps ∗ environments)

gradient steps 160 320 Gradient steps performed per update.
(steps/batch_size ∗ epochs)environments 1 1 Number of simultaneous environmentsgamma 0.99 0.99 Discount factor

Shared layers [64] [64] Dense layer shared between the policy andvalue networksPolicy layers [64,128,256,128,64] [64,128,256,128,64] Policy network architectureValue layers [128,256] [128,256] Value network architectureActivation function Tanh Tanh Activation function
Table 4.4: TRPO and PPO configurations for constructive placement.

probabilities over the discretised layout region. Stable Baselines3 (Raffin et al., 2021)
is used to access performance implementations of the aforementioned on-policy algo-
rithms. We mirror the default parameters set up by the authors of Schulman et al. (2015)
and Schulman et al. (2017), respectively. Table 4.4 summarises the experimental setup.

The reward function described by Equation 4.1 returns the absolute wirelength of the
circuit, and since no normalisation has been used, training is restricted to a single layout.
The original work by Mirhoseini et al. (2021) performs training across numerous layouts
without employing normalisation, raising concerns about their claims for generalising to
unseen circuits. We randomly select three layouts from the dataset described in Section
4.1.3, use one for training and then evaluate the resulting policy on all three in terms of
both HPWL and post-routing wirelength as described in the next section.

4.1.6 Evaluation
For fair evaluation, a method for capturing performance regardless of the training proce-
dure is needed. One approach is to use HPWL approximation or actual post-routing wire-
length. The latter is generally preferred Spindler and Johannes (2007) as a good HPWL
value does not guarantee a 100% routable layout (Cheng et al., 2022; Lin et al., 2021). For
instance, Cheng et al. (2022) evaluate the effectiveness of their placement initialisation
algorithm in terms of post-routing wirelength, albeit they make use FreeRouting (Wirtz,
2023). Lin et al. (2021) also use post-routing wirelength to evaluate their routing algo-
rithm alongside a beta version of the commercial router deepPCB (DeepPCB, 2023) and
FreeRouting. The number of VIAs is also reported in this case. A SA placement methodol-

51

CHAPTER 4. MATERIALS & METHODS

Figure 4.7: Procedure for evaluating RL policies against SA. A randomisedunseen circuit is concurrently optimised by the proposed method and SA-PCB. The resulting optimised layouts are routed with PcbRouter.
ogy is used as the baseline due to its effectiveness on small circuits and immunity to vari-
ability (Kirkpatrick et al., 1983; Markov et al., 2015; Sechen and Sangiovanni-Vincentelli,
1985). SA-PCB (Holtz et al., 2020; Merrill, 2021) is employed for establishing a baseline
for optimised placements, and post-routing wirelength is generated using PcbRouter (Lin
et al., 2020), ensuring a fair evaluation procedure for different objective functions.

Figure 4.7 illustrates evaluating an RL policy along a baseline established by SA us-
ing post-routing wirelength. The process begins by loading the best policy for a given
setup and noting the initial configuration to ensure identical starting conditions for the
proposed method and SA-PCB. The HPWL of the optimised layouts are then computed,
and they are subsequently routed using PcbRouter, incorporating the changes mentioned
in Appendix A.2. This process is repeated four times with different initial conditions. Fi-
nally, log files generated by the evaluation runs are automatically parsed, with the mean
and standard deviation tabulated in a pdf report for analysis.

4.2 Single-Component Iterative Placer
This section treats the second and third objectives by formulating the iterative PCB com-
ponent placement problem as an RL task, then designing experiments for analysing the
fundamental mechanisms of the problem. We aim to identify the best method to train an
RL agent to orient a movable component in an otherwise locked circuit. Specifically,

1. PCB placement problem is formulated as an RL task. It provides a description of the
problem setup, including the environment, observation and action spaces.

52

CHAPTER 4. MATERIALS & METHODS

2. Four distinct reward functions are described, of which three differ fundamentally.
3. Finally, the dataset is discussed, followed by the experimental setup for training and

evaluation processes, including hyperparameter optimisation and an assortment of
tests aiming to empirically identify the best setup.

We focus on a subset of features typically employed in PCB design flow. We do this
because we are interested in identifying the essential relationships between what works
and what does not. For these reasons, we make the following assumptions:

1. Single-sided placement restricting placement to the top layer, as opposed to double-
sided placement, where components are placed on both top and bottom layers.

2. Movable componentsmust be two terminal devices (e.g. resistors, capacitors, diodes),
while fixed components can have an arbitrary number of pins.

4.2.1 Iterative PCB Component Placement as an MDP
This section introduces the iterative PCB component placement concept as an MDP. We
briefly outline the key elements constituting the MDP framework, including the state
space, action space, state transition, and reward.

1. State space - A combination of the component’s perceived surroundings, directional
data pointing towards the goal region and neighbouring component cluster, and
position and attitude information of itself on the placement region.

2. Action space - Discrete or continuous spaces define changes in the component’s
position and orientation. The latter has granular control over the magnitude and
direction of movement. The former’s movement is limited to discrete steps along
the basis vectors.

3. State transition - A change in movement or orientation will cause the agent to move
to another state.

4. Reward - The goal for generic PCB component placement correlateswith an overlap-
free placement having minimal wirelength. We present various formulations to di-
rectly or indirectly learn generalisable techniques achieving this.

53

CHAPTER 4. MATERIALS & METHODS

Num Observation Min Max Type0-7 Normalised overlap contribution in 45 segments 0 1 np.float328-15 Normalised line-of-sight contribution in 45 segments 0 1 np.float3216 Magnitude of direction-of-movement vector 0 1 np.float3217 Angle of direction-of-movement vector 0 1 np.float3218 Magnitude of direction-of-movement vector 0 1 np.float3219 Angle of direction-of-movement vector 0 1 np.float3220 Normalised component centroid x-coordinate 0 1 np.float3221 Normalised component centroid y-coordinate 0 1 np.float3222 Component orientation 0 1 np.float32
Table 4.5: Observation space for iterative component placement.

4.2.2 Gym Environment
The environment for iterative single-component placement was explicitly designed to
adhere to the specifications of OpenAI Gym (Brockman et al., 2016). Among the core
methods, the initialisation function configures the environment based on user-provided
settings. The reset and step methods are utilised for episodic training. Optional methods
for visually rendering the environment and user interaction were omitted, and instead,
OpenCV (Bradski and Kaehler, 2008) was used to export episodes as MPEG4 video files.

During the initialisation phase, the environment is configured with user arguments,
and submodules are initialised. During the reset step, the .pcb description file containing
one or more circuits is parsed, and a layout is randomly selected and initialised. If the data
augmenter module (Section 4.2.6.2) is enabled, a random rotation and translation are ap-
plied to the locked portion of the circuit, and finally, the movable component is randomly
initialised within the PCB area. An observation capturing the initial state is computed.
Via the step method, the policy maps it onto an action which is subsequently applied to
the environment, translating and rotating the movable component. Consequently, the
environment returns a new observation that reflects the updated state accompanied by a
reward gauging the quality of the action. The episode terminates after the agent carries
out a predefined number of steps T = 200.
4.2.2.1 Observation Space
The observation space consists of a 23-element vector divided into three categories: the
perceived surroundings that detect overlapping and neighbouring components (elements
0-15), goal information for locating the target and neighbouring components (elements
16-20), and self-positioning and orientation information (elements 21-23). Table 4.5 sum-
marises the observation space, while each element is detailed within Section 4.2.3.

54

CHAPTER 4. MATERIALS & METHODS

Num Action
0 Step along the positive y-axis1 Step along the positive x-axis2 Step along the negative y-axis3 Step along the negative x-axis4 Offset orientation by 90 ◦

5 No change
Table 4.6: Discrete action space for iterative component placement.
Num Observation Min Max Type
0 Magnitude of translation vector 0 1 np.float321 Angle of translation vector 0 2π np.float322 Orientation (see Equation 4.3) 0 1 np.float32

Table 4.7: Continuous action space for iterative component placement.
4.2.2.2 Action Space
Two action spaces are available for the environment, which describe the translation and
orientation of the component. The discrete action space, summarised in Table 4.6, and
detailed in Section 4.2.4.1, limits translation along the basis vectors and allows orientation
in 90◦ increments. On the other hand, the continuous action space, described in Table 4.7
and detailed in Section 4.2.4.2, offers more precise control by describing translation as a
vector while resolving orientation orthogonally. It further differs from its discrete coun-
terpart by allowing simultaneous translation and orientation of the current component.
4.2.2.3 Reward Signal
The reward signal is categorised into three classes, each presenting a paradigm shift in the
behaviour promoted. Table 4.8 summarises each class and the compatible action space.
Section 4.2.5 presents the mathematical formulation and discusses each class in detail.

4.2.3 Observation Space
The observation is the most complicated computation carried out by the environment.
It contains three distinct pieces of information: the agent’s view of its surroundings, di-
rectional information pointing towards the goal and information related to the agent’s
location on the PCB. The resulting observation is the 23-element vector summarised in
Table 4.5. This section details the individual components making up the observation.

55

CHAPTER 4. MATERIALS & METHODS

4.2.3.1 Surrounding View
The PCB graph representation is drawn as a grayscale image comprised of two layers to
identify the surrounding obstacles. Figure 4.8 illustrates our graphical representation of
a PCB along with decomposed layers. The first layer depicted in Figure 4.8(b), contains
the drawing of the moveable component, while the second layer shown in Figure 4.8(c)
contains the remaining locked portion of the circuit and padding. The size of both images
is identical. The dimensions of the constituents in pixels are computed as a function of
the board size, padding and resolution. The padding and resolution are parameters de-
fined within the environment and are typically fixed across experiment sets. The padding
is set to a value exceeding the largest dimension of any moveable component, and the
resolution value is significantly smaller than the maximum allowable step size. Figure
4.8(a) illustrates the complete representation, including designators, ratsnest and dimen-
sional information. Additional optional layers include information useful for debugging
and troubleshooting such as component designators, ratsnest and component pads.

(a) Combined layered PCB (b) Moveable component (c) Fixed circuit and padding
Figure 4.8: PCB netlist representation as a stack of images. The LeftmostFigure depicts the entire layout, which is further divided into movable andlocked components.

Description Notation Equation Action Space
Reward based on layout dependent parameters R1 4.5b DiscreteReward based on expert knowledge, variant 1 R2a 4.7a BothReward based on expert knowledge, variant 2 R2b 4.8a BothReward based on agent’s expertise R3 4.9a Continuous

Table 4.8: Summary of reward signals used for iterative single-componentplacement.

56

CHAPTER 4. MATERIALS & METHODS

Figure 4.9: Overlap and line-of-sight masks derived from circle segments
Mask overlays are generated next to compute the line of sight and overlap data be-

tween the moveable component and the environment. A circle is drawn with a centre
corresponding to the movable component’s centroid and comprised of eight segments.
Each segment occupies a distinct grayscale image with the same size and resolution as
the pictorial in the previous section. The result is a stack of eight images, each corre-
sponding to a 45-degree segment originating at the component’s central location.

Line of sight information is derived from a series of boolean operations between the
masks and the fixed layout. First, a NAND operation is performed between the moveable
component and the sector to obtain the mask. This operation captures the obstacles near
the component within the mask’s region. An AND operation with a fixed layout follows
to capture the nearby objects within the sector. The overlap measurement is similarly
computed. The mask comprises the sector portion that intersects the fixed component;
thus, the mask is generated by an AND operation between the circle’s segments and the
image containing the fixed component. The result is then applied to the image containing
the fixed portion of the layout and padding. This operation captures the part of the com-
ponent that intersects with its fixed environmental obstacles. Figure 4.9 illustrates how
the mask set is derived from a circle originating from the movable component’s origin.
The circle’s radius is a multiple of the component’s largest dimension.

All boolean operations are performed in a bitwise manner on raw pixel data. In both
cases, the resulting images of themasked regions are normalised. The images are summed
up and divided by their masks to generate a normalised value ranging from 0 to 1. The
drawings are generated using OpenCV (Bradski and Kaehler, 2008) in Python. The reso-
lution of the drawings is a user-definable parameter and was set to 100µm for all experi-
ments carried out throughout this dissertation.

57

CHAPTER 4. MATERIALS & METHODS

4.2.3.2 Directional Data
The line of sight and overlap measurements provides the agent with information about
its surrounding environment. For the agent to be able to move close to its neighbour
components sharing the same nets, it needs directional information. As a result, two
vectors in the form of (r, θ) are provided.

One vector is derived from all the pad-to-pad vectors between the current compo-
nent and its neighbours. It roughly sums up all the vectors to obtain a mean vector that,
moving along, may reduce the wirelength for all nets involved. In Figure 4.10(a), pad one
of component R1 is part of a multi-pin net as indicated by the black lines of ratsnest. In
this case, the resultant vector is computed, and its magnitude is divided by the number
of vectors involved to maintain relatively small numerical values and have a local effect
rather than a global one. The red vector represents the vector containing this compressed
representation. Pad two of component R1 is a point-to-point connection; therefore, the
vector is used as is, as shown by the red vector superimposed on the black connection
line. The blue vector represents the feature vector and is simply the sum of the two red
vectors translated to the centre of the component.

The group vector, illustrated in Figure 4.10(b) by the blue arrow, is computed between
the current component’s centre point and the group’s centroid. It provides information

(a) Direction of movement vector (b) Group vector
Figure 4.10: Extraction of directional information from the circuit netlist.On the left is the resultant vector obtained from all point-to-point con-nections between the current component and its neighbours, while on theright is the vector relative to the cluster centroid tied by common nets.

58

CHAPTER 4. MATERIALS & METHODS

about where the agent is relative to its neighbours. Since a net is not limited to a con-
nection between two pads (point-to-point) and may connect an arbitrary amount of pads
across an arbitrary number of components, having information related to the group of all
involved may benefit the agent.

(x̄, ȳ) =
1
|N| ∑

n∈N
(xn, yn) =

(
1
|N| ∑

n∈N
xn,

1
|N| ∑

n∈N
yn

)
(4.2)

Equation 4.2 calculates this vector and provide the agent with information to locate
the component cluster that it is part of and move in such a way that minimises the wire-
length locally. N is a set of n nodes comprised of the current node and its neighbours.
(x̄, ȳ) is the average coordinate of all node centroids, (xn, yn) in the set N.
4.2.3.3 Component Information
Component information is the third and final piece of the observation. This includes the
node’s position normalised by the board size and its orientation in radians ranging be-
tween −πc to πc. Of particular interest, the position may be helpful for the agent to
understand when the component is outside the board region. While the agent can par-
tiallymove the component outside the board region if thewhole component is outside the
board region, the episode terminates early, and the agent will receive a significant penalty
proportional to the remaining steps. The orientation may be helpful to make sense of the
line of sight and overlap data since these are computed relative to the component ori-
entation. If the component is orientated at 0◦, the first element of the line of sight will
correspond to the sector ranging from 0◦ to 45◦ degrees. Alternatively, if the orientation
is 90◦ degrees, the first element will correspond to the 90◦ to 135◦ sector. Therefore, if its
orientation changes, the vector must be interpreted accordingly.

4.2.4 Action Space
The action space defines the output of the policy and specifies the range and size of
the action that can be performed. This section specifies how the agent interacts with
the environment to alter its state using discrete and continuous action spaces which are
respectively summarised in Tables 4.6 and 4.7.
4.2.4.1 Discrete Action Space
The discrete action space defines six actions the policy can select to perform in the envi-
ronment. Concerning Figure 4.11, actions zero through three select a translation action

59

CHAPTER 4. MATERIALS & METHODS

(a) Discrete action space (b) Continuous action space
Figure 4.11: Discrete and continuous action spaces

where the component is displaced forward, backwards, left or right, respectively. The
magnitude of displacement is an environment variable that can assume values in the re-
gion of 0.3-0.7mm and, by default, takes a value of 0.5mm. These values are suggested
by supplementary experiments in Appendix C.2.1. Action four offset the orientation, ϕ of
the components by 90◦.
4.2.4.2 Continuous Action Space
The continuous action space defines three elements the magnitude r, direction θ and
orientation ϕ. The translation is defined as a vector having a magnitude and direction in
the form of (r,θ). Themagnitude can take values between zero and one, while the direction
is defined in the range of 0c to 2πc. Translation components are illustrated by arrows zero
and one in Figure 4.11(b). The component’s orientation, ϕ shown by arrow two, is also a
continuous value in the range of zero to one, albeit is interpreted as one of four discrete
orientations as denoted by Equation 4.3. The magnitude is scaled by the step length,
an environment parameter assuming a default value of 1, effectively limiting the agent’s
movement to 1mm in any direction.

The continuous encoding scheme has two advantages over its discrete counterpart.
Firstly, translation is not discretised; thus, the agent has more granular control. Secondly,
translation and orientation can be performed simultaneously. These benefits comes at
the cost of an increasingly challenging training process.

60

CHAPTER 4. MATERIALS & METHODS

orientation =



0◦ when 0 ≤ ϕ < 0.25

90◦ when 0.25 ≤ ϕ < 0.5

180◦ when 0.5 ≤ ϕ < 0.75

270◦ otherwise

(4.3)

4.2.5 Reward Signal
The reward signal is crucial for the agent to learn generalisable placement techniques that
can be applied to unseen circuits. It is the medium through which the designer communi-
cates the task’s goals to the agent, effectively guiding the learning process by rewarding
good actions. Four reward mechanisms are investigated, with incremental improvements
in the interest of generalisation. These reward functions are classified into three funda-
mentally distinct groups, with the second having two variations:

1. The reward is encoded using absolute problem-dependent parameters ofwirelength
and overlap and enables finding solutions for individual layouts.

2. The reward encodes the expert placement as its target in a problem-independent
signal. It mimics the expert designer by using expert placement as the goal.

3. The reward function is based on problem-dependent parameters of wirelength and
overlap. However, wirelength is normalised relative to the initial state and best his-
torically known values. Therefore as the policy improves, the reward signal adapts,
allowing the agent to learn through self-improvement without expert guidance.

We will present the details of each reward scheme in the upcoming subsections. First,
an early termination penalty common to all reward signals is introduced. Subsequent
sections detail each reward category as listed above.
4.2.5.1 Early Termination Penalty
The agent can freely move the component anywhere on the XY plane representing the
layout region, and the environment imposes no bounds. In other words, the component
can move outside the board area, into the padding and outside the scope of the problem.
While this does not cause any problems, it is a behaviour that we want to impede and
would like the agent to operate inside the board region. Therefore, the agent is heav-
ily penalised when moving the component outside the layout area. While some overlap
with the padding is allowed, if the component moves entirely outside the layout area, the

61

CHAPTER 4. MATERIALS & METHODS

episode terminates immediately, and the agent is assigned a negative reward proportional
to its remaining steps. This part of the reward signal is the early termination penalty, ζ and
is common throughout all reward functions. Equation 4.4a illustrates how ζ is computed,
where sm and st are, respectively, the maximum episode steps and the steps carried out
by the agent at time t. pr = 16 is a constant for scaling the step difference leading to
the penalty and is assigned its values according to Equation 4.4b. Its value was identified
empirically as part of preliminary testing.

ζ = (sm − st)× pr (4.4a)
pr =

pr i f done and sm ̸= st

0 otherwise
(4.4b)

4.2.5.2 R1: Reward based on Problem Dependent Parameters
Credit is assigned based on changes in wirelength, overlap and movement. Preliminary
tests suggested that rewarding relative changes instead of absolute parameter values
caused the agent to learn. However, in certain situations, the agent was observed finding
sneaky ways to perform well without simultaneously reaching our goals. For these rea-
sons, the R1 described by Equation 4.5b assigns both immediate and terminal rewards.

The former is listed in Equation 4.5a and is comprised of a linear combination of HPWL
ht, overlap ot, and movement penalty st. The subscript t denotes the episode timestep.
The remaining parameters with an s subscript are designer-assigned constants for empha-
sising particular aspects of the reward signal. The terminal reward is assigned by Equation
4.5b and completes credit assignment R1.

qt = −(hs(ht − ht−1) + osot + ssst)− ζ (4.5a)
R1 =

qt − (10 × ht) i f done and sm ̸= st

qt otherwise
(4.5b)

Equation 4.6a gives the contribution of overlap in the reward signal. It is assigned a
zero value if the sum of all overlapping sectors is less than 1e−3. Otherwise, it is raised to
the power of e. Since the overlap term is stored as a double, any values smaller than 1e−3

are considered zero. This is necessary because the zero conditional tests may sometimes
fail if the term contains a residual value resulting from the finite precision of the IEEE754
floating-point numeric system.

62

CHAPTER 4. MATERIALS & METHODS

ot =

eoverlap i f overlap ≥ 1e−3

0 otherwise
(4.6a)

st =


0 i f no step
1 i f translation step
4 i f orientation step

(4.6b)

The term st in Equation 4.5b penalises the agent from moving in the environment.
Different actions acquire different penalties, as detailed in Equation 4.6. Changes in the
orientation are penalised significantly higher than translation moves, and the remaining
still carries no penalty. Such a mechanism can promote subtle undesired behaviours. On
the one hand, it incentivises the agent to find and stick to a suitable location. On the
other, it may inhibit it from moving due to being penalised. In order to ensure the former,
a terminal reward is assigned proportional to the quality of the layout, thereby ensuring
that if the agent decides not to move, it will perform poorly in comparison.
4.2.5.3 R2x: Reward based on Expert Knowledge
The credit assignment presented next is radically different from that proposed in the pre-
vious section. It discards all task parameters for wirelength and overlap and uses the ex-
pert’s cartesian position and orientation as the agent’s target. The reward signal presented
in this section motivates the RL agent to mimic the behaviour of the expert designer. We
expect the agent to learn fundamental placement techniques given sufficiently large and
diverse datasets as a side effect.

R2a = tan
(

clip
(

d0 − dt

d0
,−1, 1

)
× π

2.1

)
×
(

1 +
At

5

)
− ζ (4.7a)

At = 1 − |ae − at|
2π

(4.7b)

R2b = tan
(

clip
(

d0 − dt

d0
,−1, 1

)
× π

2.1

)
×
(

1 +
3At

20

)
− ζ (4.8a)

At = int
(

1 − |ae − at|
2π

)
(4.8b)

Equations 4.7a and 4.8a present two variations of this reward function that differ in
reward scaling as a function of the component’s orientation relative to that of the expert.
d0 is the distance between the initial position and the expert’s position, and similarly, dt

63

CHAPTER 4. MATERIALS & METHODS

is the distance computed at time t. The orientation gain, At, is a factor that scales of the
distance-based reward by up to 20% depending on orientation correctness. It is uniquely
defined for R2a by Equation 4.7b and for R2b by Equation 4.8b where ae is the angle of
the expert and at is the angle of the component as assigned by the agent at timestep, t.

We add a non-linear function to the normalised distance to aggressively push the
agent towards the expert target. This approach removes the burden on the designer to
weigh the terms and prevents the agent from finding sneaky ways tomaximise the reward
without simultaneously achieving the designer’s goals. Once the agent starts moving in
the right direction, it should get easier to reach the destination. Reward functions 4.7a
and 4.8a can be applied to environments with both discrete and continuous action spaces.
4.2.5.4 R3: Reward based on Agent’s Expertise
The reward signal is reformulated a third time, combining ideas from the previous two
sections. First, we use wirelength and overlap to encode the reward in a way that is
meaningful to the agent. Secondly, we normalise it relative to the initial conditions and
best historically known values. Combining these two allows the agent to autonomously
learn across layouts without requiring expert knowledge. Thus we surrender control over
what makes a good layout and allow the agent to define it as its training necessitates.

Equation 4.9a demonstrates the reward function as a linear combination of HPWL and
overlap, where n and m are user-assigned coefficients that respectively weigh the HPWL
and overlap. Equation 4.9b defines Ht the normalised HPWL relative to the reset state
and expert (best historically known) value ho and he respectively. Equation 4.9c defines
the inverted overlap contribution, Ot where, ot,s refers to the normalised overlap of sector
s at timestep t. The early termination penalty is retained as with all previous rewards.

R3 = tan
(

nHt + mOt

n + m
× π

2.1

)
− ζ (4.9a)

Ht = clip
(

ho − ht

ho − he
,−1, 1

)
(4.9b)

Ot =

(
1 − 1

s ∑
s

ot,s

)
(4.9c)

Furthermore, if the agent finds better valid expert values, they are updated during
the reset step at the start of a new episode. The reward signal will therefore change
throughout the learning process. This challenges algorithms with a replay buffer since
they will be reusing inconsistent training samples, and thus, the training process may not
converge or require an extended amount of time. However, its potential lie in removing all

64

CHAPTER 4. MATERIALS & METHODS

aspects of human bias from the handcrafted training layouts. During its interaction with
the environment, the agent will encounter situations where the HPWL is better than the
expert. Allowing the agent to update these parameters will result in consistent expert
targets. This is important because it will allow generalisation to unseen layouts.

4.2.6 Dataset
Weuse a single layout from the dataset described in Section 4.1.3, and by choice ofmove-
able components, we create five variations. The central component is an IC with eight
pins, while the rest are two-terminal devices consisting of SMD resistors, capacitors and
diodes. Based on this layout, two datasets are derived, namely, D1 and D2. D1 containsthree unique layouts of increasing complexity. D2 contains five layouts, each having a
particular movable two-terminal device. All layouts in both derived datasets have a single
moveable component marked by unlocking it in the KiCad (Bautista et al., 2022) software
suite. Appendix B.2 presents pictorial representations of the individual layouts for both
datasets. Notice that the pads are generally omitted from our drawings since they are
only for aesthetic purposes and may hinder the visual identification of overlapping parts.

Recall that the single-component setup simplifies the problem, and our goal is to eval-
uate the efficacy of learning a policy. For our purposes, a single circuit with five variations
is sufficient as it enables us to determine whether a policy can be learned for a specific
scenario andwhether this approach can facilitate the learning of generalisation behaviour.
4.2.6.1 Expert Position and Orientation
Reward signals mimicing the human designer, specifically R2a (Equation 4.7a) and R2b(Equation 4.8a), require the expert position and orientation of the moveable component.
Similarly reward signals that normalise reward parameters with best historical value, in-
cluding R3 (Equation 4.9a) may use the expert setup as an advanced starting point. The
pcb object stores the layout’s original position and orientation values as placed by the
expert engineer and can be used for these purposes.
4.2.6.2 Data Augmentation
Resulting from a limited dataset and our desire to maintain a single layout, a data augmen-
tation module is used to scale the limited data to virtually unlimited. Literature suggests
(Raileanu et al., 2021) that augmentation may improve training time by requiring fewer
rollouts and tends to better generalise to variations of the training data and priorly unseen
environments. In our case, before the start of an episode, we augment the original layout

65

CHAPTER 4. MATERIALS & METHODS

by applying a translation followed by a rotation to the locked portion. The moveable com-
ponent is still randomly initialised. Any expert target information is altered accordingly.
4.2.7 Training
The training process is parallelised at numerous levels to increase productivity while en-
suring we utilise the machines adequately. Moreover, due to numerous distinct experi-
ments, each requiring multiple runs, parts of the process are automated to minimise hu-
man error and ensure consistency throughout the research project.

The data used for training is collected through interactionwith the environment. There-
fore different runs initialised with distinct seed values can lead to amassing different tra-
jectories of varying quality that may ormay not lead to learning the desired policy. For this
reason, quantitative results increase our confidence and demonstrate the agent’s abilities
to explore and learn regardless of variations. A single experiment is repeated with differ-
ent albeit deterministic seed values four to ten times. Concerning Figure 4.12, the number
of runs is queued and parallelised over several workers. When the queue is empty, the
workers are terminated one by one and averages with standard deviation are calculated.

Individual runs are monitored in Tensorboard (Abadi et al., 2015), an experiment log-
ging tool with a web-based User Interface (UI). It holds information from multiple runs
and updates the UIin real time. When all experiments have finished, the generated data is
automatically processed, and a .pdf report containing charts and tables is automatically
generated. An automated reporting system significantly reduced the time spent aggre-
gating results while greatly minimising human error, ensuring consistency in an iterative
development process.
4.2.7.1 Choice of Learning Algorithms
On-policy algorithms such as TRPO and PPO collect data using the most recent version
of the policy and may struggle to learn on tasks where good trajectories are hard to iden-
tify. In particular preliminary experiments with continuous action spaces suggested that
learning was highly challenging. The upside is that they tend to converge quicker, so we
investigate TRPO and PPO advanced policy optimisation algorithms, mostly with discrete
action spaces. We employ TD3 (Fujimoto et al., 2018) and SAC (Haarnoja et al., 2018)
hybrid actor-critic methods to address challenging learning environments. Their replay
buffer helps retain critical trajectories for learning. Additionally, preliminary experiments
showed that TD3 and SAC outperformed competing algorithms regarding performance
and stability. They also offer distinctive features for search space exploration that may be
desirable for specific tasks.

66

CHAPTER 4. MATERIALS & METHODS

Figure 4.12: Flowchart illustrating parallelised training procedure. nworker processes are spawned to execute the m queued training runs. Idleworkers are terminated when no queued runs are available.
Four RL algorithms are used for the experiments in this section. TRPO by Schulman

et al. (2015) and PPO by Schulman et al. (2017) are on-policy algorithms while TD3 by
Fujimoto et al. (2018) and SAC by Haarnoja et al. (2018) are off-policy algorithms. The
default configuration from Stable Baselines3 (Raffin et al., 2021) is summarised in Table
4.9. The framework retains the default parameters as proposed by the original authors.

67

CHAPTER 4. MATERIALS & METHODS

Hyperparameter TRPO PPO TD3 SAC Description
Learning rate 1e-3 3e-4 1e-3 3e-4 Learning rate for adam optimiserRollout steps 2048 2048 - - Rollout steps per environmentReplay buffer size - - 1e6 1e6 Size of replay buffer for off-policy algorithmsBatch size 128 64 100 256 Minibatch size for updatesTraining frequency 8192 8192 200 1 Weight update frequency in stepsGradient steps 640 1280 200 1 Gradient steps performed per updateEnvironemnts 4 4 4 4 Number of simultaneous envrionmentsGamma 0.99 0.99 0.99 0.99 Discount factorPolicy network 32, 32, 128, 64, 64 400, 300 Policy network architectureValue network 64, 128, 64 - - Value network architecture for on-policy algorithmsQ network - - 400, 300 Q network architecture for off-policy algorithms

Table 4.9: Default configuration for Stable Baselines3 RL algorithms.
4.2.7.2 Neural Architecture Search
A combined hyperparameter and neural architecture is performed to identify optimised
parameter setups and neural topologies that may potentially yield higher performance.
With the environment set up according to Table 4.11 and the search space bounded by
the constraints in Table 4.10, Optuna (Akiba et al., 2019) is used to carry out the multi-
objective optimisation process with a TPE sampler (Bergstra et al., 2013, 2011). This
process is repeated for both discrete and continuous action spaces.
Hyperparameter Value Description
Neural network layers 1 - 3 Number of neural network layers for policy and Q or valuenetworksHidden layer size 16 - 512 Number of neurons in the hidden layers. May be distinctlyfor each hidden layerActivation function ReLU ortanh Choice of activation function, applied to all neurons in thehidden layers

Table 4.10: Hyperparameter ranges considered for the NAS.

4.2.8 Experimental Setup
This section describes the experiments conducted to study the effectiveness of the MDP
formulation. Initially, a proof-of-concept experiment is performed using R1. Subsequently,we evaluate the efficacy of reward R2x by employing our optimal architecture in conjunc-
tion with Stable Baselines3 (Raffin et al., 2021), using both action spaces. Finally, we
introduce R3 (Equation 4.9a), which enables the agent to discover wirelength targets as
part of the exploration process autonomously.

68

CHAPTER 4. MATERIALS & METHODS

Parameter Value Description
timesteps 1e6 Number of training timestepsmax_steps 200 The maximum allowable steps per episodestep_size 0.5 | 1.0 The step length for discrete and continious action spacesrespectivelyreward_type R2a Reward function as summarised in Table 4.8data_augmenter True Data augmenter is used for orientation and translationruns 6 The results will be averaged over six runs

Table 4.11: Default single-component environment parameters.
The RL algorithms and the environment have a significant amount of tunable param-

eters that may affect the training process in both time, performance or otherwise. The
essential parameters are listed in Table 4.11 and will be assumed throughout the rest of
this research project where applicable and unless otherwise stated.
4.2.8.1 Experiments with a Discrete Action Space and R1
TRPO and PPO are used to train policies in our environment guided by R1 in Equation
4.5b. Scaling constants were identified empirically, taking the following values for HPWL
hs = 4, overlap os = 4 and stepping penalty Ss = 1. The scaling limitations of R1 were
known at the design stage, and thus no extensive effort was expended in studying pa-
rameter relationships. However, its value lies in demonstrating that a policy can learn
placement techniques using the proposed MDP formulation. Two experiments assess
the policy’s ability to learn placement techniques. The first uses a static environment
without data augmentation, while the second introduces variation through data augmen-
tation. The default environment setup in Table 4.11 is assumed, and the RL algorithms
are set up according to Table 4.9.
4.2.8.2 Experiments with a Discrete Action Space and R2x
Two distinct experiment sets are proposed on the two datasets in Section 4.2.6. The first
uses the three unique layouts in D1, each with increasing complexity resulting in three
separate experiments. The second uses D2 comprised of five layouts and assesses the
ability to learn generalisable placement techniques across distinct layouts and results in
a single experiment. In all cases, data augmentation is used to introduce variation.

Before conducting the experiments, a combined hyperparameter and neural architec-
ture search is performed to identify the optimised setup, shown in Table 5.6. RL policies

69

CHAPTER 4. MATERIALS & METHODS

trained with the optimised setup are presented alongside the default configuration of
Stable Baselines3 (Raffin et al., 2021), listed in Table 4.9.
4.2.8.3 Experiments with a Continuous Action Space and R2x
The experiments described in the previous section are repeated using a continuous ac-
tion space. A hyperparameter search is performed to identify the optimised architecture,
shown in Table 5.8 and resulting experiments are presented alongside the default config-
uration of Stable Baselines3, listed in Table 4.9.
4.2.8.4 Experiments with a Continuous Action Space and R3
Regarding R3, we are investigating the impact of a changing reward signal on training
performance by examining two different replay buffer sizes: 300k and 600k. These sizes
were selected based on preliminary experiments that indicated near-optimal values of
expert parameters were achieved after 100k steps. Subsequent experiments investi-
gate whether desirable placement behaviours can be evoked on demand by varying the
weighting of the reward signal parameters in Equation 4.9a. Specifically, we will study
three configurations: one that equally weighs both HPWL and overlap and two that will
emphasise one term at the expense of the other. The choice of figures is arbitrary since
our goal is to observe whether distinct behaviours can be elicited and whether they result
in improved performance rather than finding the optimal tradeoff. The problem setup and
presentation of results are identical to that described in the previous section 4.2.8.3.

The experiments outlined are performed twice, once using the optimised architecture
listed in Table 5.8 in Section 5.2.3.1 and another using the Stable Baselines3 (Raffin et al.,
2021) default configuration listed in Table 4.9. Evaluations are carried out side-by-side.

Experiment (#) Replay buffer size HPWL coefficient Overlap coefficient
1 300k 1 12 300k 1 23 300k 2 14 600k 1 15 600k 1 26 600k 2 1

Table 4.12: Combined replay buffer and parameter experiments for R3.

70

CHAPTER 4. MATERIALS & METHODS

4.2.8.5 Additional Experiments
Additional experiments were carried out to establish clear baselines and identify the ef-
fect of particular parameters on training performance. The former comprises preliminary
tests for setup validation. The latter, amongst others, include assessing the impact of
episode and step length on training performance and reward maximisation. For additional
information, please refer to Appendecies C.1-C.3

4.2.9 Evaluation
Experiments are evaluated based on accumulated reward and their ability to generalise
across layouts. We aim to systematically evaluate the fundamental mechanics of orientat-
ing a single component in an otherwise fixed circuit. We are not interested in peak train-
ing performance but in identifying and understanding the relationships that influence the
training process and learned behaviours. Learning across a training set of layouts, not un-
seen layouts, is very difficult. This is because the dataset is based on human handcrafted
layouts and, therefore, is subject to bias and inconsistency. While we will perform train-
ing across several layouts, this element will limit the depth of our experiments. That said,
our evaluation comprises a thorough hyperparameter optimisation procedure, followed
by rigorous empirical experimentation leading to necessary actionable results. Said dif-
ferently, the conclusions drawn from single-component experiments are mandatory and
will provide the basis for the multi-component approach to be discussed in Section 4.3.

4.3 Multi-Component Iterative Placer
This section addresses the fourth objective by designing a multi-component iterative PCB
placer capable of learning generalisable placement techniques. It is divided as follows:

1. A highly configurable multi-component training environment is introduced. It ex-
tends from the single-component environment presented Section 4.2.2.

2. Describe experimental procedures that thoroughly test the adaptive reward signal
via rigorous parameter and ablation tests, the effect of variable-sized replay buffer
and accelerated learning through expert knowledge.

3. Describe an evaluation strategy that allows a fair comparison against Simulated An-
nealing (SA) and presents results without ambiguity and in a standard manner.

71

CHAPTER 4. MATERIALS & METHODS

4.3.1 Environment
The multi-component environment extends the concepts of the single-component envi-
ronment to all movable parts of the circuit, effectively addressing the leakage of expert
bias through the observation space. It follows a similar flow to an OpenAI Gym (Brock-
man et al., 2016) environment, implementing the three essential functions (init, reset, and
step), but it does not adhere to its specification. The fundamental difference arises during
the step method, wherein the policy is invoked for all movable components. Each time,
it samples an updated view and acts accordingly. As a result, the number of training data
points collected per episode varies for different circuits and equals the product of move-
able components and episode steps. In the upcoming subsections, we present a succinct
description of the environment and discuss episodic flow in further detail in Section 4.3.3.
4.3.1.1 Observation Space
The observation space is identical to the single-component environment described in Sec-
tion 4.2.2.1 and summarised by the associated Table 4.5. However, the procedure for
deriving the observation changes and is explained in Section 4.3.2.
4.3.1.2 Action Space
Based on the conclusions derived in Section 5.2.6, we have adopted the continuous ac-
tion space introduced for the single-component environment. The reader is referred to
Section 4.2.2.2, where the continuous action space is introduced and accompanied by an
associated summary in Table 4.7.
4.3.1.3 Reward
The rewardmechanism used to assign the agent credit is built upon R3 originally proposed
in Section 4.2.5.4. Recall that we aim to learn generalisable placement techniqueswithout
expert knowledge. Therefore reward needs to be based on problem-related parameters
and assign credit indiscriminately across layouts to achieve this goal. Based on these ideas,
credit is assigned after each step according to Equation 4.10. It comprises three terms,
Euclidean Wirelength (EW) favouring the agent, HPWL benefitting component clusters
common to specific nets, and overlap helps maintain a legal (overlap-free) layout. The
weighting of these parameters provides a way to control the behaviour learned by pol-
icy. For example, emphasising the EW over HPWL promotes the agent to find the best
placement with lesser regard to, and often at the expense of increased wirelength for its
neighbours. Alternatively, if HPWL is emphasised over EW, the agent will be motivated

72

CHAPTER 4. MATERIALS & METHODS

to collaborate with neighbouring components to minimise the net length spanning across
the component cluster.

Rt = tan
(

nWt + mHt + p(1 − Ot)

n + m + p
× π

2.1

)
− ζ (4.10)

The value for n, m and p scale the individual component but the term inside the par-
enthsis retain a value of π

2.1
c magnitude. The constituent parameters for EW Wt, HPWL

Ht and overlap Ot are computed as defined in the following Equations 4.11a-4.11c:
Wt = clip

(
w0 − wt

w0 − we
,−1, 1

)
(4.11a)

Ht = clip
(

h0 − ht

h0 − he
,−1, 1

)
(4.11b)

Ot =
1
8

7

∑
i=0

Ot,i (4.11c)
w0, wt and we are related to the EW, at timestep zero, at timestep t and the expert

value respectively. Similarly for h0, ht and he albeit relating to theHPWL. Ot,i is the overlapof segment i at timestep t. Wt and Ht aremaintainedwithin amagnitude of one by clipping
the excess, while overlap never exceeds unity by design. Doing so prevents their linear
combination from exceeding unity and therefore π

2.1
c in Equation 4.10.

If better expert parameters are found during an episode, they are updated during the
reset step before the commencement of the next episode. Most works in the literature
(Badriyah et al., 2017; Holtz et al., 2020; Ismail et al., 2012) use a singlewirelength approx-
imation. However, we employ both on the basis that minimising EW will solely benefit
the agent while reducing HPWL will benefit the group related by the multi-pin net.

4.3.2 Computing Observations in a Multi-Component Setup
The computation of the observation is a significant change moving from a single to a
multi-component environment. The agent still represents a single component, albeit it
has access to the entire netlist graph, primarily stored within the environment. Through
C++ pointers, the agent can access the most recent version and subsequently compute
the appropriate observation in between policy invocations.

The process of computing thesemetrics is similar to the one outlined in Section 4.2.3.1.
We elaborate on the original technique by drawing every movable component on a dis-
tinct layer. Line-of-sight and overlap masks are generated based on the current node,
and bitwise logical operations are performed between the layer containing the current
component and all the remaining layers containing the moveable and fixed components.

73

CHAPTER 4. MATERIALS & METHODS

(a) Combined layered PCB (b) Moveable components (c) Fixed circuit and padding
Figure 4.13: PCB netlist representation as a stack of images. Leftmost im-age depicts the entire layout, where eachmoveable component is assigneda distinct layer as shown in the centre, and the anchor is locked on the right.

This step requires significant computation that increases nonlinearly with the number of
components present and will be the bottleneck preventing this approach from scaling to
large circuits. However, it suffices for this thesis because we aim for a proof of concept
focusing on generalisation to unseen circuits. Figure 4.13(a) illustrates a complete lay-
out containing all the components on the board and padding. Figure 4.13(b) stacks the
moveable components on distinct layers. In contrast, Figure 4.13(c) contains the remain-
ing fixed component and padding on an additional single layer. The overlap contribution
from all the sectors is normalised, and the maximum value across all the layers is taken.
The observation space is identical to that presented in section 4.2.3, and the action space
is continuous and conforms with the details of Section 4.2.4.2.

4.3.3 Episodic Flow
The previous section detailed how an observation is generated for a single-component in
a multi-component setup. In this section, we will explain how an episode progresses in
the context of learning general policies. The agent’s role is to perceive the surrounding
environment and take actions to co-optimise its location, maximising the reward signal.
In contrast, the environment is the host and encompasses all movable and fixed compo-
nents. Consequently, to allow achieving our objectives, it must be able to accommodate
any number of agents and dynamically swap PCB layouts of arbitrary size. To elaborate,
when the environment step method is called, it sequentially invokes the policy on each
movable component in the netlist, collecting a new observation and taking the appro-
priate action each time. This sequential process is necessary because the actions taken

74

CHAPTER 4. MATERIALS & METHODS

by the agent on the previous component may influence the observation captured for the
current component. Configuring the problem at both the global level (environment) and
local level (agent) is necessary to enable this functionality and switch features throughout
the exploration of the problem. Tracking performance and representing complex data in
various forms is essential for understanding the implementation’s merits and limitations.

The flow diagram in Figure 4.14 provides a high-level overview of a training run. The
flowchart on the left depicts the process carried out by the environment. Its primary
function is to load a distinct layout at the beginning of each training episode, invoke the
agents, and monitor the episode termination condition. On the right side of Figure 4.14, a
more detailed depiction of the environment initialisation is provided, including the random
layout selection, layout augmentation, and initialisation of the constituent agents.

Figure 4.14: Flowchart illustrating the multi-component training proce-dure. The environment randomly selects a layout and initialises each mov-able component to a random location. The policy is applied to each com-ponent in every step until a terminal state is reached. Following trainingcompletion, evaluation using unseen layouts is performed.

75

CHAPTER 4. MATERIALS & METHODS

4.3.4 Dataset
The dataset for training policies in multi-component setup comprises the same 30 unique
circuits described in Section 4.1.4.2. Each circuit contains one fixed component and other-
wise moveable components. The fixed component is generally an IC central to the circuit.
Intuitively, a feature circuit on the PCB layout comprises multiple subsystems segregated
by wires for analogue circuits and buses (e.g. SPI) for digital ones. Locking the central
component is based on this observation and serves as an anchor point for the remaining
components. In this thesis, we sampled a subset of nine unique circuits, with layout size
limited to (20x20mm) and not exceeding 12 components. Six circuits comprise the train-
ing dataset MT , and the remaining comprise the unseen testing dataset MU . This decisionwas made in the interest of training time since the multi-component setup is inherently
sequential, and the computation required scales non-linearly with increasing layout area
and the number of components. Table B.5 enumerates the sampled circuits.

4.3.5 Training
The highest-performing RL algorithms identified from the single component experiments
in Section 5.2.5.3, TD3 and SAC, have been adapted to suit a multi-component context.
4.3.5.1 Hybrid Actor-Critic Algorithms
The conclusions drawn from the single component experiments, summarised in 5.2.6,
showed that TD3 (Fujimoto et al., 2018) and SAC (Haarnoja et al., 2018) were the best-
performing learning algorithms. When judged by an expert designer, the former yielded
better circuit layouts, while SAC consistently surpassed TD3 in training performance. The
multi-component setup proposed in this chapter cannot use the Stable Baselines3 (Raffin
et al., 2021) framework because the environment does not conform to the standard Ope-
nAI Gym (Brockman et al., 2016) specifications and therefore, vanilla implementations of
TD3 and SACwere developed as proposed by the original authors. The hyperparameters,
policy network andQ network architectures are established in Table 4.9 for TD3 and SAC.
All remaining parameters are set to the default values proposed by the original authors,
coincidentally corresponding to those set by Stable Baselines3 (Raffin et al., 2021). The
custom implementation of both algorithms was verified against Stable Baselines3.
4.3.5.2 Replay Buffer
During training, the agent may encounter better values for EW and HPWL than those as-
signed by the expert designer, if any. When trainingwithout the best historical knowledge

76

CHAPTER 4. MATERIALS & METHODS

(expert knowledge), the agent has to discover these parameters as part of exploration
through trial and error. As these parameters update, the reward signal changes, and the
replay buffer’s constituents become relatively inconsistent. The inconsistency between
the data points is worst during the initial episodes because the agent will frequently find
better and better values. For this reason, a custom replay buffer is implemented to al-
low easy resizing. The replay buffer is initially small, but its capacity gradually increases
throughout the training lifecycle. Therefore, the buffer size is small when the data is highly
inconsistent as the policy learns better behaviours, and the likelihood of finding drastically
better parameter values decreases. As a result of increased data stability, the buffer ca-
pacity can be increased accordingly, providing the agent with a larger pool of data points.
We assume no knowledge of the expert parameters and allow the learning process to find
better values a through the trial-and-error. For practical reasons, we dedicate 5000 steps
to identify ballpark values of the expert parameters.

4.3.6 Experimental Setup
The experimental setup investigating iterative multi-component placement is detailed in
the upcoming sections. The experiments differ by choice of weighting in the reward func-
tion, and we assign various ballpark combinations to study potentially differing perfor-
mance and behaviours. Identifying optimised configurations (e.g. through Optuna (Akiba
et al., 2019)) is left as a task for future work since the aim of this thesis is to investigate
end-to-end AI workflows capable of generalisable behaviour. Thus using ballparks figures
allows us to study diverse behaviours that may potentially be sub-optimal.
4.3.6.1 Parameter Trade-off Experiments
We investigate the weighting of reward parameters and study how emphasising particu-
lar aspects influences learned behaviours. We use four setups, and the configuration is
detailed in Table 4.13. The first three tests emphasise a single aspect of the cost func-
tion by assigning it a high weighting of 60%, while equally dividing the remaining weight
among the other parameters. The fourth setup emphasises wirelength in terms of HPWL
and EW by equally assigning them 40% contribution and using 20% for the overlap. The
weighting coefficients sum up to ten, ensuring consistency across setups.
4.3.6.2 Ablation Experiments
Ablation tests are conducted to quantify the importance, or lack thereof, of specific re-
ward elements. In this series of tests, we reduce the reward function from three ele-

77

CHAPTER 4. MATERIALS & METHODS

EW HPWL Overlap Description
6 2 2 Trade-off emphasised on EW2 6 2 Trade-off emphasised on HPWL2 2 6 Trade-off emphasised on overlap4 4 2 Trade-off emphasised on wirelength

Table 4.13: Multi-component parameter experiment configurations.
ments to two and observe the relationships that emerge when using either EW or HPWL
in conjunction with overlap. We study three scenarios for each wirelength-overlap con-
figuration. Firstly, we assign an equal weighting of 50% to both parameters, and then
we prioritise one over the other by assigning it 80% and the remaining 20% to the other
parameter. Table 4.14 summarises the configurations used in the ablation tests.

EW HPWL Overlap Description
0 5 5 Ablation test ignoring EW and equal weighting0 8 2 Ablation test ignoring EW and favouring HPWL0 2 8 Ablation test ignoring EW and favouring overlap5 0 5 Ablation test ignoring HPWL and equal weighting8 0 2 Ablation test ignoring HPWL and favouring EW2 0 8 Ablation test ignoring HPWL and favouring overlap

Table 4.14: Multi-component ablation experiment configurations.

4.3.6.3 Additional Experiments
Additional experiments were carried out to understand the impact of particular features
on learning and generalisation capabilities. We study the effect prior expert knowledge
has on learning performance and whether providing it beforehand aids or hinders explo-
ration of the search space. We also investigate the effects of different replay buffer sizes
and resizing strategies. For additional information, please refer to Appendix C.4

4.3.7 Evaluation
The evaluation process uses the unseen dataset, MU and follows both the rationale and
procedure outlined in Section 4.1.6. Concerning our method, we track two layouts with
varying overlaps, ranging from 0% to 10%, in increments of 10%. This constraint is re-
laxed because futurework can include a legalisation post-processing task to resolveminor
overlaps. It should be noted that PcbRouter (Lin et al., 2020) considers components pin
centroids for routing and therefore is impartial to minor overlaps.

78

5 Results & Discussion

Experimental results delivering the proposed objectives are presented in this Chapter.
The constructive placementmethodology, including the supervised learning circuit quality
estimator, is presented first. Subsequent sections validate our novel iterative placement
formulation and systematically investigate the application of RL in a constrained single-
component setup. Lastly, from the key findings of the single-component approach, we
adapt the problem setup to a multi-component setup, demonstrate the ability to learn
fundamental and general placement techniques, and deliver a complete solution for op-
timising the placement of PCB components. The reader is reminded to refer the Chapter
4 when requiring clarification on the experimental setup.

5.1 Constructive Placer

Figure 5.1: Experimental flow for constructive placement methodology.

79

CHAPTER 5. RESULTS & DISCUSSION

The experimental results for the constructive placer are presented in this section,
whose flow is depicted in Figure 5.1. First, the performance of the graph-level regression
task is detailed, including the hyperparameter optimisation results, followed by an analysis
of the best setup and prediction performance in terms of HPWL and routed wirelength.
Next, the capabilities of learning policies based on using the circuit quality estimator as
the state encoder is studied, presenting quantitative measurements and qualitative ob-
servations alongside placement by SA (Holtz et al., 2020). The section concludes with a
summary of the key findings and a discussion on the efficacy of this approach.

5.1.1 Wirelength Prediction
The wirelength prediction task aims to predict wirelength values directly from a circuit
netlist. Since overlap-free wirelength is a measure of circuit quality, the overarching goal
is to use such a model as the state encoder for a component placement policy.
5.1.1.1 Neural Architecture Search
The results of a combined hyperparameter and neural architecture search is described
in Section 4.1.4.3 and constrained by Table 4.3 are summarised in Table 5.1. The best
model prefers Micheli (2009)’s spatial graph convolutional layer to process graph data
into a fixed-size embedding. Small batch sizes, deep, fully connected layers, and Rectified
Linear Unit (ReLU) activation functions are also preferred. The graph embedding size
was identified as the most critical parameter, with a relative importance of 54%. It is
followed by 13% for the graph convolution layer’s activation function and 9% for the
Hyperparameter GCN GraphConv GAT
Learning rate 9.0574e-4 4.5806e-4 8.4668e-4Batch size 32 32 32Number of graph convolutional layers 2 3 2Graph convolutional layer embedding size 89 127 106Graph convolutional layer activation function Tanh ReLU ReLUNumber of MLP dense layers 4 4 3MLP layer size 106 112 57MLP activation function ReLU ReLU TanhRMSE (averaged over 4 runs) 11.4015 7.0754 12.7678

Table 5.1: Combined hyperparameter andNAS results for HPWL and post-routing wirelength prediction tasks.

80

CHAPTER 5. RESULTS & DISCUSSION

batch size. Averaging four runs per trial yielded an optimisation history chart that was
robust to outliers evident from clusters of trials centred around a specific objective value.
5.1.1.2 Accuracy
Figures 5.2(a) and 5.2(b) illustrate the training performance for respectively predicting
HPWL and routed wirelength targets. In both cases, the average RMSE loss is computed
with a window of five samples and is minimised quickly. The model begins to overfit the
training data slightly afterwards, evidenced by the divergence between the training and
testing loss. However, the early stopping mechanism kicks in, terminating the training
process and preventing the unnecessary deterioration of test accuracy. The small RMSE
loss value on the y-axis of the plots arises from combining a small batch size of 32 samples
with a relatively large training set of 0.7 ∗ 8192 = 5734 samples. Therefore every epoch
5734/32 = 179 gradient steps are performed, which are sufficient to significantly reduce
the RMSE loss on the first few epochs.

(a) Mean RMSE loss for HPWL prediction (b) Mean RMSE loss for routed wirelength prediction

Figure 5.2: Training performance for the wirelength predication task.
The model’s accuracy is gauged on test data comprised of circuit topologies not seen

during training to ensure that it is evaluated under conditions likely experienced in the real
world. Table 5.2 enumerates the absolute accuracy recorded over four runs. HPWL pre-
diction achieves an 88.32% accuracy on the test set and 72.08% on the unseen dataset.
A notable 16.24% performance degradation on average. On the other hand, predicting
the routed wirelength on average yielded an 82.4% accuracy on the test set and 69.49%
on the unseen set, a decline of 12.9%.

Analysing the raw data of the best models concerning the models in Table 5.1 has
shown that only the graphConv layer (Micheli, 2009) yielded high accuracy on the unseen

81

CHAPTER 5. RESULTS & DISCUSSION

HPWL Routed Wirelength
Run (#) Test set Unseen set % Test set Unseen set %0 87.69% 72.31% -15.38% 82.01% 68.17% -13.84%1 88.50% 70.98% -17.52% 81.78% 69.53% -12.25%2 88.27% 71.36% -16.91% 82.92% 73.29% -9.63%3 88.82% 73.65% -15.17% 82.88% 66.99% -15.89%Mean 88.32% 72.08% -16.24% 82.40% 69.49% -12.90%

Table 5.2: HPWL and routed wirelength prediction accuracy.
dataset. The graphConv layer exhibits the highest potential for generalising the predic-
tions to unseen circuit netlists. On average, the best trial using GCN for HPWL prediction
yielded a test accuracy of 78.63% and an unseen accuracy of 23.86%. Similarly, for GAT,
mean test accuracy of 69.03% and unseen accuracy of 15.67% were recorded. In both
cases, the deterioration in test accuracy is not surprising due to the higher RMSE er-
ror reported in Table 5.1. Interestingly, the discrepancy between accuracy on test and
unseen datasets is 58.27% for GCN, 53.36% for GAT and 16.24% for graphConv. A pos-
sible cause of GCN’s low accuracy is its architecture. However, graphConv and GAT are
both spatial GNNs, with the latter being more sophisticated due to the attention mech-
anism. This leads us to believe that the cause lies in the attention mechanism and may
be attributed to failing to learn the correct classification of the relative importance of
neighbouring nodes. As detailed by Veličković et al. (2017) and summarised in Section
2.4.1.3, the classification is a function of the node pairs and therefore, including more
representative node features may improve generalisation performance.

5.1.2 Constructive Placement
The goal of a constructive placer is to sequentially place components from an ordered
circuit netlist onto an empty PCB such that overlap-free wirelength is minimised. Our
aim in this section is to encode the problem state space with the predictor developed in
the prior section and train an RL agent to perform constructive placement.
5.1.2.1 Learning Policies for Constructive Placement
This section’s experiments demonstrate the agent’s ability to learn a policy for construc-
tive PCB placement. Figure 5.3 illustrates the training performance of TRPO and PPO,
with the former accumulating a higher return while being more consistent across runs,
evident from the lower standard deviation across episode runs. Table 5.3 summarises the

82

CHAPTER 5. RESULTS & DISCUSSION

results from four runs initialised with distinct seed values and indicates that on average
TRPO outperforms PPO by 3.5%.

Figure 5.3: Plot of average return for constructive placement training.

TRPO PPO % TRPO
run #1 -69.7365 ± 0.3140 -70.9859 ± 0.7220 1.76%run #2 -68.1976 ± 0.2321 -68.9814 ± 0.4900 1.14%run #3 -71.6339 ± 0.4621 -81.4128 ± 1.3659 12.01%run #4 -70.5304 ± 0.5838 -68.8251 ± 0.7951 -2.48%mean -70.0246 ± 0.3980 -72.5513 ± 0.8432 3.48%
Table 5.3: Average return after constructive placement training.

5.1.2.2 Inference Performance
The best TRPO policy from the previous section is evaluated against SA-PCB (Holtz et al.,
2020) using three distinct layouts, two of which were not seen during training. Table 5.4
summarises the average HPWL and routed wirelength from four evaluations. On average,
SA outperforms our approach by 35.04% and 41.65% on the two wirelength metrics.

Figure 5.4 depicts four placement scenarios. Figure 5.4(a) is a random placement, sub
Figures 5.4(b) and 5.4(c) are generated by our policy and sub Figure 5.4(d) was generated
by SA-PCB (Holtz et al., 2020). An improvement is witnessed between random placement
and those generated by our solution. The layouts are compact, and clusters of compo-

83

CHAPTER 5. RESULTS & DISCUSSION

(a) Random placement HPWL=97.30 (b) Constructive RL placement. HPWL=53.22

(c) Constructive RL placement. HPWL=60.91 (d) SA placement. HPWL=41.57
Figure 5.4: Placements generated by the proposedmethodology alongsideSA. The latter demonstrates tightly coupled clusters connected by com-mon nets, a fundamental not witnessed in the proposed method.

nent clusters linked by common nets can be observed within the enclosing red polygons.
By contrast, SA does not compact all the components together but is more selective of
the components within distinct clusters. Figure 5.4(d) shows that SA is more capable of
identifying and orienting components linked by common nets, which is noticeable from
the clear demarcation of component groups and ultimately reflected in a lower HPWL.

84

CHAPTER 5. RESULTS & DISCUSSION

Proposed Simulated annealing % Simulated annealing
HPWL Routed Wirelength HPWL Routed Wirelength HPWL Routed WirelengthLayout 1 64.63 75.98 43.91 46.33 32.06% 39.02%Layout 2 56.54 63.20 34.96 36.41 38.16% 42.39%Layout 3 60.58 69.59 39.44 41.37 34.91% 40.55%

Table 5.4: HPWL and post-routing wirelength comparison between RL-based constructive placement and SA.
5.1.3 Key Conclusions for Constructive Placement
Drawing inspiration from the current state-of-the-art AI-assisted floorplanner by Mirho-
seini et al. (2021), we designed and evaluated a constructive PCB component placer. A
custom OpenAI Gym (Brockman et al., 2016) environment built around a C++ placement
engine and an embedded placement quality estimator used as a state encoder for the
RL policy. The placement quality estimator was derived from a supervised learning re-
gression task that predicted HPWL with an accuracy of 72% and post-routing wirelength
with an accuracy of 69%. A constructive placement policy was successfully trained, albeit
falling short when evaluated against SA-PCB (Holtz et al., 2020).

Although the graph level predictions for HPWL yielded a high accuracy on the test
set, a deterioration of 16.24% was observed on unseen layouts indicating plenty of room
for improvement. Net length estimation tasks for IC physical design (Xie et al., 2021)
achieved high accuracy while encoding the netlist graph differently and placing focus on
nets rather than components. In the same case, high accuracy was partly attributed to
using a customised GAT specific for the task. Altering the netlist representation and in-
cluding additional attributes can improve accuracy and generalisation performance. Addi-
tionally, systematic analysis of the effectiveness of geometrical attributes in conjunction
with standard graph convolutional layers (Micheli, 2009; Veličković et al., 2017) for a wire-
length prediction taskmay lead to a better layer architecture. Mirhoseini et al. (2021) note
that the graph predictor task used as the state encoder was challenging and proposed a
novel edge-based graph convolution, and while they provide a mathematical description
of their layer, albeit no further characterisation or performance analysis.

The RL setup currently learns from a single layout. Training across of set of layouts
is unlikely to improve performance and suggests that the problem formulation needs im-
provement. The major limitation lies in the discretised action space, which will prevent
the solution from scaling to layout regions that reflect real-world problems. It depends
on two conflicting parameters: the size of the layout region and resolution. Our setup
requires 400 neurons for a 20x20mm layout region with a resolution of 1mm. PCB lay-
out regions are highly application-dependent and may be small such that they fit within a

85

CHAPTER 5. RESULTS & DISCUSSION

smartwatch or as large as a computer motherboard. Furthermore, component sizes well
have awide dynamic range and the ratio between smallest and largest components is sub-
stantial, introducing a size-resolution trade-off. It may span several orders of magnitude,
with 10x to 100x typical for small ICs, 1000x for small processors and 10000x for large
processors. are commonly found in PCBs ofmoderate complexity. Mirhoseini et al. (2021)
went around this issue by employing a series of deconvolution layers to scale the output
of the policy. However, in our case, we believed that the compressed output from the
policy would be scaled at the cost of detail, which is highly important in our application.

5.2 Single-Component Iterative Placement
This section presents the results relating to objective two, formulating the iterative PCB
placement problem as an RL task and objective three, systematic evaluation of the prob-
lem mechanics. We aim to train an RL agent capable of placing a single component in
an otherwise fixed circuit. The test results for this section are categorised based on the
reward signal:

1. R1, reward derived from absolute problem-dependent parameters. Proposed in Sec-
tion 4.2.5.2 and Equation 4.5b

2. R2x, Reward derived from problem-independent parameters guiding the agent to
mimic expert designer. Proposed in Section 4.2.5.3 and Equations 4.7a and 4.8a

3. R3, reward derived from problem parameters conditioned by the agent’s expertise
for autonomous guidance. Proposed in Section 4.2.5.4 and Equation 4.9a

The experiment flows for each category are illustrated in Figures 5.5(a) - 5.5(b). Briefly,
the first category presents a proof-of-concept model verifying that our environment and
problem setup can yield the desired behaviour. We immediately move on to the second
category, investigating the feasibility of mimicking the expert. We perform a neural ar-
chitecture search for discrete and continuous action spaces and investigate the learning
ability for both reward signal variations in R2x. Supplementary experiments investigate
the impact of random initialisation and episode and step lengths. Finally, we move to the
third category (R3) and assess the ability of an agent to adapt to a changing reward sig-
nal and learn relative to it. We achieve this through a combined analysis of replay buffer
sizing and different reward parameter weightings.

86

CHAPTER 5. RESULTS & DISCUSSION

(a) Reward signal derived from expert layouts (b) Reward signal based on agent’s experience
Figure 5.5: Experimental flow for iterative single-component methodol-ogy. A combined hyperparameter and NAS is followed by experimentsassessing reward signals and various features.

5.2.1 Experiments with a Discrete Action Space and R1
Reward signal R1 described by Equation 4.5b provides an instantaneous and a terminal
reward. Both are important since the first motivates the agent to move in the direction
which reduces the HPWL, overlap and steps, while the latter measures the final layout
quality. Their combination guides the agent through the episode without losing sight of
the end goal: minimal wirelength and no overlap. Figures 5.6(a) and 5.6(b) compare the
training performance of TRPO and PPO on a single layout respectively with and without

87

CHAPTER 5. RESULTS & DISCUSSION

(a) Training without data augmentation (b) Training with data augmentation
Figure 5.6: Average return for training on layout D1a guided by reward R1.

Training withoutdata augmentation Training withdata augmentation %
TRPO -165.60 ± 85.20 -258.08 ± 261.49 55.85%PPO -181.70 ± 230.18 -367.70 ± 380.08 102.36%% TRPO 9.72% 42.47%

Table 5.5: Average return for policies trained with reward signal R1.
data augmentation. Table 5.5 summarises the average return and shows that TRPO is
superior to PPO. The gap is especially significant when variations are introduced during
training where TRPO attains a 42% higher average return. The higher average return
indicates that the policy follows better trajectories and ultimately places the component
better than PPO. Furthermore, TRPO tends to be more stable during training, evident
from the lower standard deviation and, as a result, a smoother average return curve.

Figure 5.7 depicts the trajectory of policies derived from the experiments mentioned
above. The value in the top right corner represents the current step (terminal state), and
the negative value in the lower left corner corresponds to the return. Interestingly, the
policy finds different ways of placing the component independent of the initial location,
as evident from Figures 5.7(b) and 5.7(c). From an expert’s perspective, Figure 5.7(a) is
the best placement, and Figure 5.7(b) is also acceptable. The latter’s return is higher by
33% and is partially attributed to the increased number of steps taken by the policy which
highlights the limitations imposed by the discrete action space. While steps are penalised,
the HPWL is higher, leading to a lower terminal reward. The agent requires additional
steps when the goal region is inclined with an angle that is not a multiple of π

2 . This is

88

CHAPTER 5. RESULTS & DISCUSSION

investigated further in Appendix C.2.1.2.

(a) Policy trained with TRPO (b) Policy trained with TRPO (c) Policy trained with PPO
Figure 5.7: Distinct scenarios demonstrating learned placement be-haviours under reward R1.

Throughout our testing, we have found that immediate and terminal elements are
necessary to learn a policy. If either was missing, the agent was not motivated to search
for a placement and observed the following behaviours. First, when the component is
spawned in an isolated region, the agent makes no movement or changes to the orien-
tation and remains frozen. Alternatively, when generated on top of other components, it
moves such that all overlap is removed and remains stationary. In both cases, trajectory
analysis showed no desire to move towards the goal location. Altering reward parame-
ters to prioritise specific parameters, such as wirelength or overlap, often inhibited the
policy from converging, and only after numerous trials a suitable parameter set could be
identified. While an optimisation process may identify the optimal parameters, we see
this sensitivity as the significant limitation of this approach.

This approach has themerit of serving as a proof of concept that validates our environ-
ment and presents a milestone. However, due to intricate reward engineering, to which
the training process is sensitive, it is of little value from a practical perspective. As such,
no attempts were made to generalise or pursue this method further. With the ground
moving under our feet, it is risky and impractical to pursue more complex goals based
on this approach. For this reason, in the upcoming section, we reformulate the reward
signal to be independent of problem parameters by training policies to mimic the expert
designer. This will push the burden of identifying the relative importance of the problem
parameters off the designer and onto the policy training process. By guiding the policy
with the expert target, the training process is now responsible for implicitly identifying
the importance of wirelength and overlap, which should be emergent features.

89

CHAPTER 5. RESULTS & DISCUSSION

5.2.2 Experiments with a Discrete Action Space and R2x
A paradigm shift in how we reward the agent is brought about with R2x, where we at-
tempt to learn policies for optimising the placement of circuit components by mimicking
the expert. The two variations investigated are respectively described in Equations 4.7a
and 4.8a correspondingly termed R2a and R2b. This prevents specialised reward engineer-ing and directly rewards progress intending to learn placement techniques as part of the
process. In this section, we present the results of a combined neural architecture and
hyperparameter search and then discuss our findings on the efficacy of using R2x with
discrete action spaces.
5.2.2.1 Neural Architecture Search
A neural architecture search aims to find the optimal architectural parameters of a neural
network. Concerning our work, this means identifying the optimal configuration for the
policy and value neural networks including number of layers, corresponding width neu-
rons and activation function. The search is bounded by limits described in Table 4.10.
This section describes the optimal architecture for TRPO and PPO learning algorithms
with a discrete action space identified after 64 trials. Table 5.6 summarises the optimised
architecture and the corresponding objective value.

TRPO PPO
Policy network [320, 458] [377, 511]Value network [364] [433]Activation function tanh ReLUBest trial value 1821.84 1575.51

Table 5.6: NAS results for policies with discrete action spaces.

5.2.2.2 Generalisation Performance for Reward R2
Figures 5.8 and 5.9 present policy training with TRPO and PPO guided by reward R2a andR2b respectively. We evaluate our optimised neural architecture alongside the defaults
of Stable Baselines3 (Raffin et al., 2021) on the three unique layouts in D1 and a set of
multiple layouts, D2. All experiments are repeated six times, utilising a deterministic seed
value for each run that is consistent across all experiments.

Similar performance results are obtained for both reward signals however, interesting
observations can be made. The best results concerning layouts D1a and D1b are obtainedfrom reward signal R2b, while R2a dominates on layout D1c andwhen training with D2 over

90

CHAPTER 5. RESULTS & DISCUSSION

(a) Generalisation capability on layout D1a (b) Generalisation capability on layout D1b

(c) Generalisation capability on layout D1c (d) Generalisation capability on layout D2
Figure 5.8: Generalisation capability with R2a and a discrete action space.The average return is maximised in all cases, with a noticeable declinewhen training across multiple circuits.

multiple layout. Recall from section 4.2.6 that layout D1c is relatively complex, containing
a moveable component with two multiple-pin nets. Yielding the proper orientation may
be more challenging due to the human’s pre-defined orientation being sub-optimal or in-
consistent with the remainder of the layouts. Furthermore, reward R2a scales the base
reward value according to the orientation’s relative difference to the target. In contrast,
reward function R2b does not scale the base reward value unless the orientation corre-
sponds to the target. Thus if the orientation is incorrect, the latter will lose a 15% reward
scaling while the former is still being scaled, albeit by a lower amount. As a result, if the
policy cannot identify the correct orientation and constantly alters the value, reward R2ais more likely to lead to a higher return since an offset will result due to reward scaling.

91

CHAPTER 5. RESULTS & DISCUSSION

(a) Generalisation capability on layout D1a (b) Generalisation capability on layout D1b

(c) Generalisation capability on layout D1c (d) Generalisation capability on layout D2
Figure 5.9: Generalisation capability with R2b and a discrete action space.The average return is maximised in all cases, with a noticeable declinewhen training across multiple circuits.

Table 5.7 shows a notable increase in the standard deviation on layout four and more
significantly when training across layouts. Since the values presented are obtained from
six runs, the cause for the increased variation may be either attributed to sensitivity in
the initial conditions or variations across the individual episodes.

When comparing the best policies trained on D2, we observed no notable difference
between reward signals R2a and R2b. Figure 5.10 illustrates trials selectively chosen to
highlight the successes and limitations exhibited by the best policies. The policies were
selected according to the emphasised experiments in Table 5.7, using PPO with our op-
timised architecture and TRPO with the default Stable Baselines3 architecture for both
reward signals. Each trial performed 200 steps and followed the trajectory marked by the

92

CHAPTER 5. RESULTS & DISCUSSION

Reward R2a Reward R2b

Layout Proposed SB3 % Proposed(mean) Proposed SB3 % Proposed(mean)
TRPO

D1a 1348.48 ± 381.93 1396.88 ± 365.17 -3.59 1373.84 ± 347.73 1402.00 ± 357.68 -2.05D1b 1401.22 ± 401.04 1480.74 ± 401.83 -5.68 1376.16 ± 358.36 1489.19 ± 357.10 -8.21D1c 1281.97 ± 416.13 1364.62 ± 350.28 -6.45 1122.63 ± 479.98 1308.73 ± 418.07 -16.58D2 920.48 ± 603.73 997.00 ± 644.21 -6.14 901.25 ± 591.23 957.06 ± 604.04 -6.19
PPO

D1a 1437.51 ± 350.44 1413.48 ± 406.77 1.67 1491.69 ± 392.94 1345.52 ± 450.51 9.80D1b 1478.98 ± 362.64 1518.27 ± 409.84 -2.66 1531.77 ± 369.11 1478.27 ± 416.40 3.49D1c 1478.69 ± 412.99 1285.56 ± 492.40 13.06 1396.78 ± 636.85 1223.09 ± 464.67 12.44D2 1019.24± 575.87 952.42 ± 582.16 6.56 989.75 ± 645.45 885.97 ± 597.16 10.49
Table 5.7: Average return comparing the optimised models against the es-tablished defaults in Stable Baselines3. Training process guided by R2a.

white line originating from the centre of themoveable component, drawnwith high inten-
sity. The miniature circle is the target, corresponding to the placement location assigned
by the human designer. The step number associated with the depiction is presented in
the top left corner, while the return is noted in the bottom left corner.

(a) Reward R2a (TRPO) (b) Reward R2b (TRPO) (c) Reward R2a (TRPO)

(d) Reward R2a (PPO) (e) Reward R2b (PPO) (f) Reward R2a (PPO)
Figure 5.10: Distinct terminal states demonstrating success and limitationsof policies with discrete action spaces.

93

CHAPTER 5. RESULTS & DISCUSSION

Often multiple ways exist to place a single component in an otherwise fixed circuit,
which is problematic in this experiment. Generally, the agent can move the component to
the desired region, often settling with a good orientation. For example, the orientation in
Figure 5.10(b) is not deemed correct during training because the human engineer oriented
the component a further 90 degrees clockwise. However, it is still a good placement,
not considering the small overlap present. Figures 5.10(a) and 5.10(b) illustrate correct
placement corresponding with that of the expert. In contrast, Figure 5.10(f) has good
positioning and an incorrect orientation leading to a 14.3% overlap.

The average return across these trials drastically varies based on accurate position-
ing. This is the manifestation of the aggressive tangent function in the reward signal. It
also leads to a large discrepancy in return for minimal variation from the target and does
not accurately promote the fundamental behaviours necessary for mastering the task. It
is exacerbated further by inconsistencies in the layouts arising from manual placement
that mislead the agent and inhibit generalisation. The agent is provided with mixed sig-
nals, leading to settling somewhere in between. For example, Figures 5.10(d) and 5.10(e)
are deemed good placements by an expert but not Figure 5.10(f). The former two ac-
cumulate a small return while the latter gathers a significantly higher value, highlighting
shortcomings of the engineered reward signal.

Observing the policy behaviour on layouts used in training revealed some inconsis-
tencies. Figure 5.10(c) shows a policy that fails to locate and orient a component. The
way it fails indicates that the policy has yet to learn the importance of overlap and that
it has not been able to learn the fundamental principles of this task. Recall that reward
signal R2a and R2b provided by Equations 4.7a and 4.8a guide the reinforcement learning
agent to mimic human-generated layouts. Therefore it is only concerned with the result,
while we assume that during the interactive trial-and-error process, it collects data that
allows it to learn the fundamental principles of the task - minimise wirelength without
overlap. On the one hand, when we observe variations in component orientation that are
still deemed correct by the expert, it gives us hope that the agent is learning the basics.
On the other hand, when the policy dramatically fails, we lose confidence in its learned
capabilities. Failure to train across multiple layouts, evident from the low return and high
deviation as well as by observing the policy behaviour, indicates that this method fails to
generalise. The possible causes for this are discussed after assessing the same process,
albeit with a continuous action space.

94

CHAPTER 5. RESULTS & DISCUSSION

5.2.3 Experiments with a Continuous Action Space and R2x
In this section, we repeat the same experiments, assessing reward signals R2x from the
previous section, albeit with a continuous action space. Four RL algorithms are consid-
ered, these being the on-policy TRPO and PPO and the off-policy TD3 and SAC. First,
we present an experiment to identify the optimal episode length, albeit omitting the step
size, since, with a continuous action space, the policy controls the step magnitude (and di-
rection) continuously, therefore having granular control. Following is a neural architecture
search that identifies optimal architecture for the policy and value or Q neural networks
for on-policy and off-policy algorithms, respectively. Finally, we analyse the policy per-
formance concerning reward signals R2a and R2b for generalisation capabilities.

In this section, we repeat the same experiments for assessing reward signals R2x al-beit with a continuous action space. Four RL algorithms are considered, these being the
on-policy TRPO and PPO and the off-policy TD3 and SAC. Once again, we present the
optimised hyperparameters and neural architecture search on-policy and off-policy algo-
rithms, respectively. Afterwards, we analyse the policy performance concerning reward
signals R2a and R2b for generalisation capabilities. Supplementary experiments in Ap-
pendix C.3.2 investigate the optimal episode length, albeit omitting the step size, since,
with a continuous action space, the policy has granular control over the step size.
5.2.3.1 Neural Architecture Search
The neural architecture search is performed once more concerning policies with a con-
tinuous action space. The boundaries enforced on the search process are noted in Table
4.10 while the resulting topologies are summarised in Table 5.8 along with the objec-
tive value. Concerning TD3, the search process leads to an architecture requiring two to
three policy layers and favouring two Q-function layers. High importance is placed on the
choice of the activation function. In contrast, SAC is more flexible in terms of activation
function, albeit recognises high importance on the number of Q-function layers. In fact,
an objective value exceeding 1600 was only possible with two layers.

TRPO PPO TD3 SAC
Policy network [87, 341] [274] [237, 356] [20, 280]Value network [237, 346, 414] [53] [290, 449] [126, 501]Activation function tanh tanh ReLU tanhBest trial value 118.260 64.33 2124.08 1993.66
Table 5.8: NAS results for policies with continuous action spaces.

95

CHAPTER 5. RESULTS & DISCUSSION

A preliminary test in Appendix C.3.1 showed that TRPO and PPO fail to learn a policy
and discuss possible causes. Additionally, we focused on optimising the neural architec-
ture and a further attempt to learn policies could be made by altering parameters related
to the learning process. These include the learning rate, the number of observations col-
lected every rollout, and the number of network weight adjustments (gradient steps) per
epoch performed following the rollout phase. Based on these results, upcoming tests
concerning continuous action spaces are limited to TD3 and SAC.

(a) Generalisation capability on layout D1a (b) Generalisation capability on layout D1b

(c) Generalisation capability on layout D1c (d) Generalisation capability on D2
Figure 5.11: Generalisation capability with R2a and a continuous actionspace. When training across multiple circuits, a decline in average returnaccompanied by increased variance.

96

CHAPTER 5. RESULTS & DISCUSSION

5.2.3.2 Generalisation Performance for Reward R2x
The performance of the policy is evaluated numerically in terms of average return and
by analysing the exhibited behaviour on different layouts. According to Table 5.9, our
optimised TD3 on average outperforms Stable Baselines3 (Raffin et al., 2021) default ar-
chitecture on all individual layouts in D1 for both reward signals. The margins are even
more significant for SAC, indicating that the optimisation process was even more ben-
eficial. However, this is not the fundamental reason for the increased margins. Some
individual runs in TD3 failed to learn a policy, significantly influencing the average due to
low average return in the respective runs. One possible reason for the failed policy is the

(a) Generalisation capability on layout D1a (b) Generalisation capability on layout D1b

(c) Generalisation capability on layout D1c (d) Generalisation capability on D2
Figure 5.12: Generalisation capability with R2b and a continuous actionspace. When training across multiple circuits, a decline in average returnaccompanied by increased variance.

97

CHAPTER 5. RESULTS & DISCUSSION

Reward R2a Reward R2b
Layout Proposed SB3 % Proposed Proposed SB3 % Proposed

TD3
D1a 1617.06 ± 523.56 1252.18 ± 554.30 29.14 1527.31 ± 495.17 1509.84 ± 575.22 10.35D1b 1729.65 ± 439.62 1637.48 ± 542.03 5.63 1724.16 ± 415.90 1384.09 ± 444.63 24.57D1c 1571.46 ± 572.24 1565.79 ± 460.58 0.36 1409.28 ± 414.83 1270.92 ± 466.63 10.89D2 571.87 ± 474.31 1026.89 ± 545.80 -44.31 1174.29 ± 567.89 942.97 ± 550.27 24.53

SAC
D1a 1721.48 ± 387.54 1248.44 ± 560.80 37.89 1688.31 ± 392.46 1205.56 ± 567.54 40.04D1b 1905.84 ± 367.02 1312.99 ± 576.53 45.15 1759.81 ± 387.97 1418.03 ± 440.71 24.10D1c 1764.36 ± 367.67 1349.47 ± 556.07 30.74 1751.07 ± 371.71 1395.81 ± 413.02 25.45D2 808.26 ± 663.29 977.65 ± 554.6 -17.33 827.51 ± 531.49 939.30 ± 526.28 -11.9
Table 5.9: Average return comparing the optimised models against the es-tablished defaults in Stable Baselines3. Training process guided by R2b.

initial conditions that start the process from an unfavourable position. Furthermore, SAC
has the upper hand in exploration since it optimises a surrogate function that simultane-
ously maximises the reward and search space exploration. Therefore SAC may be more
effective despite starting from an unfavourable position in the search space.

When learning across multiple layouts with dataset D2, mixed results are observed,
and 75% of the time, the default Stable Baselines3 architecture outperforms our setup.
However, regardless of the neural topology, the mean return is relatively poor and ac-
companied by a significantly higher standard deviation. These numbers do not indicate
that either policy can learn across a distinct layout set, thus questioning the ability to
generalise to unseen designs. While these numbers are poor across the board, our setup
for the experiment concerning multiple layouts is at a disadvantage because the neural
architecture search was performed on a single layout, D1a.Figure 5.11 illustrates the training performance guided by reward signal R2a, whileFigure 5.12 depicts the same process, albeit guided by reward signal R2b. Experiments in
Table 5.9 show that our optimised architecture was, on average superior to Stable Base-
lines3 on all unique layouts in D1 by a margin of 13.49% and 33.89% for TD3 and SAC,
respectively. Performance deterioratedwhen training on D2 by 9.89% and 14.62% for our
optimised TD3 and SAC. Concerning the choice of reward signal, both algorithms tend
to perform better with reward signal R2a when training with individual layouts, which is
likely attributed to the averaging effect of the reward scaling mechanism.

Figures 5.13(a)-5.13(f) and 5.13(g)-5.13(l) illustrate the behaviour exhibited by the
best policies according to the average in Table 5.9. That is, the former is generated by TD3
trained with reward signal R2b, and the latter is generated with a policy trained with SAC
and reward signal R2a. The episode step number is located at the top left corner, while
the return is noted at the bottom left. Interestingly we observed that the learned pol-
icy performs well across layout sets for both algorithms. However, we sometimes noted
situations where the agent fails to position the component close to the expected target

98

CHAPTER 5. RESULTS & DISCUSSION

(a) TD3 - 9.2% overlap (b) TD3 - 0% overlap (c) TD3 - 0% overlap

(d) TD3 - 0% overlap (e) TD3 - 1.8% overlap (f) TD3 - 0% overlap

(g) SAC - 0% overlap (h) SAC - 4.8% overlap (i) SAC - 0% overlap

(j) SAC - 0% overlap (k) SAC - 9.7% overlap (l) SAC - 14% overlap
Figure 5.13: Distinct terminal states highlighting placement behaviours ex-hibited by policies trained with TD3 and SAC.

99

CHAPTER 5. RESULTS & DISCUSSION

region, as shown by Figure 5.13(k). While SAC outperformed TD3 in average return, the
latter resulted in smoother trajectories and better placement, as can be observed from
Figures 5.13(a), 5.13(d), 5.13(h) and 5.13(j). Furthermore, in the latter two, it is also ev-
ident that SAC tends to oscillate around the target region where TD3 does not. These
behaviour patterns may be attributed to the stochastic policy employed by SAC. Albeit
subjective and inferred from a limited sample set, the difference in return associated with
different episode runs is less noticeable with continuous action space.

5.2.4 Action Space Comparison on R2x
Table 5.10 summarises the best results from the previous generalisation results for dis-
crete and continuous action spaces. Concerning a discrete action space, PPO with an
optimised neural architecture is the clear winner outperforming TRPO in all layouts. For a
continuous action space, SAC’s performance in individual layouts is excellent, only falling
behind TD3 on layout D1a by a mere 0.17%. TD3 with a reward R2b seems to be the bet-
ter algorithm for training across multiple PCB layouts. In all scenarios using an off-policy
algorithm with a continuous action lead to an 18.63% higher return on average. Thus we
conclude that the additional complexity resulting from a continuous action space is bene-
ficial as it leads to more accurate policies. This is also evident from the trajectory analysis
based on Figure 5.10 for a discrete action space and 5.13 for a continuous action space.
Layout Best Discrete Algorithm Reward Best Continuous Algorithm Reward % Continuous
D1a 1491.69 ± 392.94 PPO - Ours R2b 1729.65 ± 415.90 TD3 - Ours R2a 15.58%D1b 1531.77 ± 369.11 PPO - Ours R2b 1905.84 ± 367.02 SAC - Ours R2a 24.42%D1c 1478.69 ± 412.99 PPO - Ours R2a 1764.36 ± 367.67 SAC - Ours R2a 19.32%D2 1019.24 ± 575.87 PPO - Ours R2a 1174.29 ± 545.80 TD3 - SB3 R2b 15.21%

Table 5.10: Comparison between discrete and continuous action spaces.

5.2.5 Experiments with a Continuous Action Space and R3
The section presents the results where policies are rewarded using problem-dependent
parameters with the aim of learning generalisable behaviours. In contrast with R2x, the
reward signal does not credit the agent for mimicking the expert. Instead, it promotes
the agent to autonomously identify the optimal parameters and learn relative to them.
Training is restricted to TD3 (Fujimoto et al., 2018) and SAC (Haarnoja et al., 2018) with
a continuous action space since they were identified to be the best but retain a rela-
tive comparison between our optimised architecture and Stable Baselines3 (Raffin et al.,
2021). First, the investigation of the replay buffer’s effect on the training performance

100

CHAPTER 5. RESULTS & DISCUSSION

is presented. This is done in conjunction with training several policies trading off HPWL
and overlap, for which we analyse the exhibited behaviour. Finally, we performed a gen-
eralisation performance test identical to those of the previous section, albeit using R3.
5.2.5.1 Investigation of the Replay Buffer Size on Training Performance
The replay buffer plays a significant role when using reward R3 (Equation 4.9a) because
the HPWL term in the reward function is normalised with the best-known historical value
of the parameter. The latter changes as the policy improves and learns to find better
placements. As a result, the data in the replay buffer will initially be inconsistent but
should stabilise as the policy becomes better. This experiment investigates the effect of
the replay buffer size on the training performance. Figure 5.14 depicts several runs, each
showing a side-by-side comparison of training performance using a replay buffer size of
300k and 600k samples. Sub Figures 5.14(a) through 5.14(c) utilise TD3 for learning while
5.14(d) to 5.14(f) are generated by policies trained with SAC. For each algorithm, the re-
ward is set up in three ways that prioritise particular parameters in the reward signal. Sub
Figures 5.14(a) and 5.14(d) emphasise HPWL, 5.14(b) and 5.14(e) emphasise overlap and
5.14(c) and 5.14(f) equally weight wirelength and overlap. The returns are summarised
in Table 5.11, emphasising a comparison between replay buffer size and choice of the
learning algorithm. The returns from experiment runs with differing configurations are
not directly comparable and would require an alternative evaluation method.

On average, TD3 is less sensitive to the buffer size, evident from the 1% difference
in average return. Contrastingly, SAC prefers a smaller buffer size indicative from the
10% increase in average return. Furthermore, in all tests, SAC outperformed TD3 with
by a significant 25% on average when using the smaller buffer. Additionally SAC is more
stable throughout training evident from the relatively lower standard deviation.
Replay buffer size 300k 600kTraining Algorithm TD3 SAC % SAC TD3 SAC % SAC

HPWL = 1.0Overlap = 1.0 1324.48 ± 517.16 1765.24 ± 345.90 +33.28% 1363.72 ± 520.03 1580.76 ± 386.99 +15.92%
HPWL = 1.0Overlap = 2.0 1361.99 ± 546.16 1647.48 ± 440.63 +21.05% 1402.37 ± 508.69 1544.74 ± 456.96 +10.15%
HPWL = 2.0Overlap = 1.0 1495.77 ± 462.27 1846.03 ± 281.41 +23.42% 1416.54 ± 402.82 1551.62 ± 317.45 +9.54%

Table 5.11: Average return for experiments with parametrised R3 configu-rations. Two replay buffer sizes are considered.

101

CHAPTER 5. RESULTS & DISCUSSION

(a) (HPWL=2, Overlap=1) - TD3 (b) (HPWL=1, Overlap=2) - TD3

(c) (HPWL=1, Overlap=1) - TD3 (d) (HPWL=2, Overlap=1) - SAC

(e) (HPWL=1, Overlap=2) - SAC (f) (HPWL=1, Overlap=1) - SAC
Figure 5.14: Average return for training policies with differing configura-tions of R3 and replay buffer sizes.

102

CHAPTER 5. RESULTS & DISCUSSION

5.2.5.2 Qualitative Analysis of Learned Behaviour
The reward signal comprises an HPWL and overlap terms, and favouring one at the ex-
pense of the other will encourage the policy to exhibit different behaviours. Figure 5.15
demonstrates an example of each policy trained in the previous section. Each row in Fig-
ure 5.15 illustrates three scenarios corresponding to three policies, from left to right: em-
phasise overlap, neutral and emphasise wirelength. Sub Figures 5.15(a) through 5.15(c)
in the top row were trained with TD3 while 5.15(d) through 5.15(f) in the bottom row
learned with SAC. The low-intensity projections (dark) represent the circuit’s locked por-
tion and padding. The policy controls the single component drawn with higher intensity
(bright), and the white line originating from its centroid is the trajectory taken from a
random location. The small circle corresponds to the placement location of the human
designer and was used as the target in previous experiments guided by reward R2x.

Interestingly, Figures 5.15(a) and 5.15(d) show that the policy avoids overlap to the
extent that it follows a longer trajectory and circles around the locked components or

(a) HPWL=1, Overlap=2 - TD3 (b) HPWL=1, Overlap=1 - TD3 (c) HPWL=2, Overlap=1 - TD3

(d) HPWL=1, Overlap=2 - SAC (e) HPWL=1, Overlap=1 - SAC (f) HPWL=2, Overlap=1 - SAC
Figure 5.15: Illustration of distinctive policy behaviour exhibited by TD3and SAC when emphasising particular parameters in reward signal R3.

103

CHAPTER 5. RESULTS & DISCUSSION

even alters its trajectory to avoid overlapping. In both cases, the final placement is excel-
lent because it minimises wirelength while avoiding overlap. By contrast, Figures 5.15(c)
and 5.15(f) cut straight through to the goal region without considering the overlap in the
process. In other words, the policy follows the trajectory that minimises the HPWL con-
tribution and is coherent with the behaviour promoted by the reward function since a
higher cost is associated with HPWL and a lower cost with overlap. Interestingly in both
scenarios, the final positioning has minimal overlap suggesting that the policy differen-
tiates between the intermediate process of moving closer to the optimal region and the
final placement state. Figures 5.15(b) and 5.15(e) are somewhere in between, indicative
of the balance between both reward parameters, albeit some overlap is still present in
the final state. In practice, the behaviour associated with sub Figures 5.15(c) and 5.15(f)
is desired, however all scenarios yield similar results. Some overlap in the final state is
not a big issue because it can be removed with a post-processing legalisation step. The
scenarios depicted by Figure 5.15 demonstrate that the agent embodies the behaviour
promoted by the designer through the reward signal.
5.2.5.3 Generalisation Performance for Reward R3
This section assesses the ability of the setup to learn and generalise across different layout
sets. Figure 5.16 depicts the plots of average return against the absolute number of steps
carried in the environment. Figures 5.16(a) through 5.16(c) train on a single layout with
increasing complexity and aim to quantify learning ability. In contrast, sub Figure 5.16(d)
uses a set of different layouts and aims to quantify generalisation ability. In all cases,
we evaluate our optimised architecture alongside that of Stable Baselines3 (Raffin et al.,
2021) and average all experiments over six runs.

Table 5.12 summarises the return for all experiments. Our optimised architecture out-
performs Stable Baselines3 on all individual layouts with 11.93% for TD3 and 21.59% for
SAC. The return significantly drops when learning across layout sets in D2 regardless of
the algorithm used, with optimised TD3 being outperformed by 32.59% and SAC retain-
Layout TD3 - SB3 TD3 - Proposed % Proposed SAC - SB3 SAC -Proposed % Proposed
D1a 1170.95 ± 421.85 1495.09 ± 462.27 27.74% 1476.09 ± 364.86 1846.03 ± 281.41 25.06%D1b 1141.55 ± 481.68 1176.18 ± 457.03 3.03% 1065.43 ± 438.78 1336.46 ± 397.88 25.44%D1c 1249.18 ± 469.15 1311.96 ± 421.25 5.03% 1226.96 ± 395.16 1402.03 ± 367.46 14.27%D2 687.46 ± 557.45 463.41 ± 477.89 -32.59% 792.59 ± 516.42 839.53 ± 520.34 5.92%

Table 5.12: Average return comparing the optimised models against theestablished defaults in Stable Baselines3. Training process guided by R3with (HPWL=2; Overlap=1) configuration.

104

CHAPTER 5. RESULTS & DISCUSSION

(a) Generalisation capability on D1a (b) Generalisation capability on D1b

(c) Generalisation capability on D1c (d) Generalisation capability on D2
Figure 5.16: Generalisation capability with R3, small replay buffer of size300k, and a continuous action space. When training across multiple cir-cuits, a decline in average return is accompanied by increased variance.Reward signal configuration (HPWL=2; Overlap=1).

ing the upper hand albeit with a significantly smaller margin of 5.92%. A large discrepancy
is noted in TD3 for individual layouts in D1. A possible cause is the usage of layout D1aduring the architecture search and is exacerbated since the RL agents were credited with
R2a. Thus some performance loss was expected. The failure to generalise is discussed in
the context of the single-component strategy in the upcoming section.

5.2.6 Key Conclusions for Single-Component Iterative Placement
This section presented our single-component, iterative placement environment with dis-
crete and continuous action spaces. We investigated four reward signals and the effect

105

CHAPTER 5. RESULTS & DISCUSSION

of multiple elements on learning performance, including choice of action space, episode
length, and replay buffer size in scenarios with an adaptive reward signal. In all scenar-
ios, we identified the optimal neural architecture, corresponding training algorithm and
rigorously trained policies with increasing difficulty to evaluate the capability to learn
fundamental placement behaviours and generalise across layouts. Relating to the sec-
ond objective of formulating the PCB problem as an RL task, this section showed suffi-
cient evidence (Section 5.2.5.2) of learning policies for orienting a single component in
an otherwise fixed circuit. Concerning the third objective of systematically designing and
evaluating the fundamental mechanisms of a single-component iterative PCB placement
environment. Empirically we found that an episode length of 200 steps was adequate,
and the random component initialisation had a negligible impact on the return albeit in-
creased standard deviation. Furthermore, a continuous action space slightly mitigated
the random initialisation issue due to increased freedom of movement and reduced the
error incurred due to a quantised step. TD3 (Fujimoto et al., 2018) and SAC (Haarnoja
et al., 2018) algorithms yielded the best performance and outperformed a discrete action
space by 17.67%. Performing a neural architecture search on average resulted in a 23.7%
higher return when compared to Stable Baselines3 (Raffin et al., 2021) on individual lay-
outs. The performance deteriorated by 12.26% when learning across layouts, albeit this
may be attributed to the optimisation process focused on a single layout.

Reward signal R2x showed that rewarding the agent to mimic the expert yielded good
results on individual layouts but did not convincingly demonstrate an ability to generalise.
Despite training across layouts, inconsistent behaviour was occasionally observed. This
likely arises from the inherent differences of handcrafted layouts because, with particular
exceptions, engineers rarely think in terms of HPWL. These reasons suggest that both the
goal and the dataset are inconsistent, as evident from Figures 5.10 and 5.13 and the large
discrepancy in return. On the other hand, R3 was proposed based on overlap and wire-
length that adapts to the agent’s expertise. It partly overcame the inconsistency resulting
from R2x and, through iterative self-improvement, allowed the agent to autonomously
learn a policy for accurately orienting itself in the circuit. While similar generalisation
conclusions were drawn, the behaviour exhibited by the agent was consistent according
to the parameters emphasised by the designer, as evident from Figure 5.15.

The takeaway from this approach is that layouts generated by human designers are
inconsistent, and the agent cannot learn general techniques due to receiving mixed sig-
nals during training. After proposing R3, results suggest that the limitation lies in the
locked portion of the layout, leading to conflicting observations for the agent when train-
ing across layouts. In conclusion, we demonstrated that our PCB placement formulation
allowed us to successfully train numerous RL policies under differing conditions fulfilling

106

CHAPTER 5. RESULTS & DISCUSSION

the second objective. We also presented a thorough investigation of the fundamental
mechanisms for single-component placement, thereby also fulfilling the third objective.

5.3 Multi-Component Iterative Placement

Figure 5.17: Experimental flow for iterative multi-component methodol-ogy. Experiments study the updated reward signal while supplementaryexperiments investigate particular features.
Multi-component experiments aiming to learn self-improving policies are presented

in this section. This approach can overcome the limitations of the previously outlined
single-component setup and generalise to unseen layouts. The outcomes introduced in
this section may be categorised as follows: We start by presenting results and observing
the learned behaviour as a consequence of emphasising specific parts of the reward func-
tion. Wirelength ablation tests investigating the characteristics of a reduced reward signal
follow. The study also conducts supplementary experiments to compare the learning per-
formance of an agent with pre-defined expert parameters against having to search and
identify them as part of the interactive trial-and-error learning process. The size of the re-
play buffer, resizing strategy and their effect on learning are also studied. All evaluations
presented are performed on unseen layouts and compared using post-routing wirelength.
The flow chart in Figure 5.17 captures this flow pictorially.

107

CHAPTER 5. RESULTS & DISCUSSION

5.3.1 Reward Function Parameter Trade-off Experiments
The reward signal consists of three tunable parameters, recalled from Equation 4.9a. The
Euclidean Wirelength (EW) measures the wirelength to the component’s nearest neigh-
bours, theHPWL sums up thewirelength of all the nets the component is a part of, and the
overlap quantifies any collision with nearby obstacles. This section presents the results
for the four configurations described by Table 4.13, each favouring a particular param-
eter in the reward signal. The training performance is measured in terms of return, and
each quoted result is an average derived from four distinct runs. The best policies are se-
lected for further evaluation on unseen circuits, where their effectiveness is gauged using
post-routing wirelength. SA-PCB (Holtz et al., 2020) is used to provide a baseline.

(a) (EW=6, HPWL=2, Overlap=2) (b) (EW=2, HPWL=6, Overlap=2)

(c) (EW=2, HPWL=2, Overlap=6) (d) (EW=4, HPWL=4, Overlap=2)

Figure 5.18: Average return for multi-component parameter experimentswith TD3 and SAC. Averages are calculated from a maximum of four runs.
108

CHAPTER 5. RESULTS & DISCUSSION

Configuration TD3 TD3 (Pruned) SAC % SAC
EW=6, HPWL=2, Overlap=2 514.38 ± 359.81 739.09 ± 354.98 750.20 ± 242.47 1.48%EW=2, HPWL=6, Overlap=2 525.74 ± 284.24 715.00 ± 302.43 796.23 ± 270.45 10.2%EW=2, HPWL=2, Overlap=6 623.46 ± 272.96 623.46 ± 272.96 612.65 ± 262.53 -1.77%EW=4, HPWL=4, Overlap=2 692.81 ± 348.48 692.81 ± 348.48 743.65 ± 305.53 6.84%

Table 5.13: Summary of average return for different multi-component pa-rameter trade-off experiment configurations.
Figure 5.18 illustrates the average return after applying a moving average filter with

a window of 100 samples for better visualisation. Runs that fail to learn a policy are
removed from aggregation in the previous charts but retained in Table 5.13, summarising
the average return. SAC leads TD3 on all configurations that emphasise wirelength and
yield a 4.19% higher return on average.

The policy is evaluated against SA-PCB on unseen layouts Mu, and the performance
is computed in terms of post-routing wirelength obtained after routing the circuit with
PcbRouter (Lin et al., 2020). The results are summarised in Table 5.14. For experimental
setups that heavily emphasise wirelength over overlap, the evaluation may fail to gen-
erate overlap-free results for all training runs. In such cases, the average is computed
over the available runs. Policies that emphasise overlap tend to generate less optimised
layouts regarding wirelength but are significantly more likely to yield overlap-free re-
sults while matching the results of SA-PCB. Overall, the second configuration (EW=2,
HPWL=6, Overlap=2) trained with SAC outperforms SA-PCB on all unseen layouts by an
average of 21.1% lower wirelength. Additionally, the remaining setups prioritising wire-
length consistently outperform SA-PCB by a significant margin, regardless of the learning
algorithm used. It should be noted that layout MU1 has only two components, and since
SA-PCB performs a fixed amount of iterations, it will be relatively over-optimised.

TD3 % TD3 SAC % SAC
MU0 MU1 MU2 MU0 MU1 MU2

EW=6, HPWL=2, Overlap=2 30.8 13.3 54.8 15.9% 30.9 13.9 55.3 14.3%EW=2, HPWL=6, Overlap=2 29.3 14.1 50.4 17.4% 34.5 10.6 51.7 21.1%EW=2, HPWL=2, Overlap=6 36.7 16.2 63.8 -0.1% 40.9 15.6 62.3 -2.0%EW=4, EW=4, Overlap=2 27.9 14.2 56.1 15.7% 36.4 12.9 51.4 13.9%SA-PCB (Holtz et al., 2020) 38.9 13.3 75.3 38.9 13.3 75.3
Table 5.14: Average post-routing wirelength from the best parametertrade-off experiment policies.

109

CHAPTER 5. RESULTS & DISCUSSION

5.3.2 Ablation Experiments
Ablation tests suppress a single component (EWorHPWL) in the reward signal to asses its
contribution towards the performance objective. This section presents the experimental
results for the ablation experiments described by Table 4.14. First, we assess the training
performance regarding average return and then evaluate the best policies against SA-PCB
(Holtz et al., 2020) on the unseen circuits in MU ranked by post-routingwirelength. Lastly,
we present a qualitative analysis demonstrating the placement optimisation capabilities
of our policies. Using six cases, we illustrate the key moments, from a randomly initialised
placement to an optimised layout observing both distinct fundamental behaviours em-
bodied by policies and emergent collective strategies arising from the multi-component
setup. All evaluations presented in this section are performed on unseen layouts.

Figure 5.19 illustrates the return charts plotted against the number of steps in the
environment for the six ablation test configurations. Figures 5.19(a) to 5.19(c) omit the
EW and respectively, equally weigh HPWL and overlap, emphasise HPWL and emphasise
overlap. By contrast, Figures 5.19(d) to 5.19(f) omit HPWL and respectively, equally weigh
the EW and overlap, emphasise EW and emphasise overlap. Table 5.15 summarises the
return averaged over a maximum of four runs. TD3 outperforms SAC by 3.5% on average
for configurations that linearly combine EW and overlap, while SAC lead by an average
of 6.1% on the rest. Additionally, SAC exhibits less variation during training and is less
sensitive to initial random conditions, evident from the lower standard deviation.

Routed wirelength values attained by the best policies in each category are presented
in Table 5.16. Setups that emphasise wirelength have better performance, albeit less
likely to generate overlap-free layouts. Overall, SA-PCB outperforms policies that heavily
emphasise overlap. By contrast, policies trained by TD3 and SAC emphasising HPWL on
average outperform SA-PCB by 16% and 15%, respectively. Those that emphasise EW
obtain a slightly lower margin of 14.3% and 11% for TD3 and SAC. Configurations that
give equal importance to wirelength and overlap outperform the baseline by 2.7%.
Configuration TD3 TD3 (Pruned) SAC % SAC
HPWL=5, Overlap=5 510.22 ± 283.69 510.22 ± 283.69 578.16 ± 232.07 11.75%HPWL=2, Overlap=8 498.65 ± 311.67 825.32 ± 257.57 780.23 ± 246.30 -5.78%HPWL=8, Overlap=2 305.34 ± 321.68 632.36 ± 366.32 720.11 ± 331.52 12.19%EW=5, Overlap=5 729.98 ± 326.45 729.98 ± 326.45 712.74 ± 367.55 -2.42%EW=2, Overlap=8 785.78 ± 322.92 1007.95 ± 294.59 942.54 ± 248.74 -6.94%EW=8, Overlap=2 812.94 ± 366.38 812.94 ± 366.38 802.84 ± 356.93 -1.26%

Table 5.15: Summary of average return for multi-component ablation ex-periments.
110

CHAPTER 5. RESULTS & DISCUSSION

(a) (EW=0, HPWL=5, Overlap=5) (b) (EW=0, HPWL=8, Overlap=2)

(c) (EW=0, HPWL=2, Overlap=8) (d) (EW=5, HPWL=0, Overlap=5)

(e) (EW=8, HPWL=0, Overlap=2) (f) (EW=2, HPWL=0, Overlap=8)
Figure 5.19: Average return for multi-component parameter experimentswith TD3 and SAC. Average calculated over a maximum of four runs.

111

CHAPTER 5. RESULTS & DISCUSSION

TD3 % TD3 SAC % SAC
MU0 MU1 MU2 MU0 MU1 MU2

HPWL=5, Overlap=5 45.0 15.9 61.8 -5.6% 38.1 15.6 59.6 2.0%HPWL=2, Overlap=8 44.9 15.6 86.0 -15.4% 59.6 16.3 73.8 -24.5%HPWL=8, Overlap=2 29.0 15.5 46.0 16.0% 28.7 15.2 50.8 15.0%EW=5, Overlap=5 35.5 16.9 64.4 -1.3% 36.1 15.5 61.3 3.3%EW=2, Overlap=8 43.2 15.4 71.5 -7.1% 48.3 16.4 71.7 -14.0%EW=8, Overlap=2 32.7 15.5 42.7 14.3% 29.3 15.1 58.4 11.3%SA-PCB (Holtz et al., 2020) 38.9 13.3 75.3 38.9 13.3 75.3
Table 5.16: Average post-routingwirelength generated by the best policiesfrom the ablation experiments.

5.3.3 Qualitative Policy Analysis
A quantitative analysis of particular policies on unseen circuits MU0 and MU2 is presentedin this section. MU1 is omitted because it presents a trivial case. We will analyse funda-
mental behaviours exhibited by the policies that suggest they learned the fundamental
dynamics of the task. Additionally, we will highlight emergent collaborative and compet-
itive behaviour conditionally evoked by emphasising HPWL and EW, respectively. In all
scenarios, we start from a random initial placement and, over 600 steps, progress towards
the terminal condition, where a stable, optimised layout should be reached. Figure 5.20
provides the unseen circuits optimised by SA-PCB over 600 iterations after starting from
an identical initial state. They are provided as a reference and to highlight the benefit of

(a) MU0 - Step 600/600 (SA-PCB) (b) MU2 - Step 600/600 (SA-PCB)
Figure 5.20: Circuit placements optimised with SA-PCB over 600 steps.

112

CHAPTER 5. RESULTS & DISCUSSION

(a) Initialisation - Step 0/600 (b) Step 49/600 (c) Step 598/600
Figure 5.21: Key states in optimising MU0 with policy (EW=8, Overlap=2).

leveraging experience over the stochastic nature of meta-heuristics.
Figures 5.21 and 5.22 analyse a policy that greedily optimises EW over overlap. Re-

garding the former, the system quickly settles to a suitable placement, starting from a ran-

(a) Initialisation - Step 0/600 (b) Step 54/600

(c) Step 151/600 (d) Step 567/600
Figure 5.22: Key states in optimising MU2 with policy (EW=8, Overlap=2).

113

CHAPTER 5. RESULTS & DISCUSSION

dom initial placement. The policy was rewarded when taking actions that yielded reduced
wirelength solely for the constituent component andwithout regard to its neighbours. Re-
gardless of the greedy strategy, dependent component clusters emerge. Interestingly, the
conflicting situation in which the components enclosed in the blue box of Figure 5.21(c)
is resolved differently than that in Figure 5.25(f). Later we will show policies that assign
higher importance to HPWL and will cooperate in such a scenario. However, in this sce-
nario, we noticed competition. The components oscillate back and forth in a push-pull
manner without resolving to a stable positioning.

The policy in emphasising EW in Figure 5.22 is evaluated on layout MU2, which con-
tains many small component clusters. Starting from a randomised placement in Figure
5.22(a), an initial placement emerges quickly after only 54 steps. However, this was not
good enough, and all the components were driven towards the opposite sidemoving from
5.22(b) to 5.22(c). While the position in 5.22(d) is better than 5.22(b), the latter is a ro-
tation away from achieving a similar result. The surprisingly good performance of this
policy on a layout with many multi-pin nets may be attributed to its chaotic behaviour,

(a) Initialisation - Step 0/600 (b) Step 20/600

(c) Step 200/600 (d) Final state - Step 600/600
Figure 5.23: Key states in placing MU0 with policy (HPWL=5, Overlap=5).

114

CHAPTER 5. RESULTS & DISCUSSION

which encourages exploration. It emerges from the fact that each component carries out
the best action for itself without regard to its neighbours.

Figure 5.23(a) illustrates a randomly initialised placement from which two clusters
quickly emerge, although the resulting choice of constituents could be better. It takes the
policy close to 200 steps for a minor improvement moving from Figure 5.23(b) to 5.23(c).
Similar to the change from 5.23(c) to 5.23(d). The blue arrows in Figure 5.23(d) highlight
a possible strategy that may lead to a better placement. The movement requires either
circling the neighbouring components or moving through them. The former requires tem-
porarily acquiring a penalty due to worsening the wirelength, and similarly for the latter,
albeit due to overlap. Since the reward signal balances the two, the policy will be severely
penalised for performing either and thus is not driven to pursue these potential scenarios.

Figure 5.24 captures the seminal steps for the same policy on layout MU2. In the initialsteps, the policy quickly divides into two clusters as shown by 5.24(b) and 5.24(c) such
that a few steps later, the resulting placement is a near-perfect one as shown by 5.24(d). In
Figure 5.24(e), after only 29 steps, the optimised layout generated by our policy resembles

(a) Initialisation - Step 0/600 (b) Step 9/600 (c) Step 14/600

(d) Step 19/600 (e) Step 29/600 (f) Step 600/600
Figure 5.24: Key states in placing MU2 with policy (HPWL=5, Overlap=5).

115

CHAPTER 5. RESULTS & DISCUSSION

the final one 5.24(f). By contrast, the one generated by SAwas not as optimised after 600
steps, a 20x difference. Notice how components connected by the net enclosed within
the blue rectangle come close together in Figure 5.24(f). Until the episode terminates,
minor changes are observed.

Next, Figures 5.25 and 5.26 demonstrate a policy emphasising wirelength. Place-
ment starts randomly in Figure 5.25(a). Notice identical initialisation conditions to Figure
5.24(a). The components quickly move towards the anchoring IC in 5.25(b). Since this
is a poor placement, a set of swaps marked by red arrows are witnessed in 5.25(c) and
5.25(d). These are motivated by a decrease in HPWL and are evident in 5.25(e) by com-
ponent clusters closely collating around the anchor point. A conflicting situation emerges
towards the end of the episode, marked by the blue square in Figure 5.25(f). Themembers
seem to take a side and stick to it, a collaborative effort - this is the behaviour observed in
the video these frames were extracted from. Furthermore, it can be seen that the layout
degrades moving from step 350 to 600 with some overlap, which is tolerated due to less
importance being associated with it in the reward function.

(a) Initialisation - Step 0/600 (b) Step 16/600 (c) Step 25/600

(d) Step 199/600 (e) Step 350/600 (f) Step 599/600
Figure 5.25: Key states in placing MU0 with policy (HPWL=8, Overlap=2).

116

CHAPTER 5. RESULTS & DISCUSSION

(a) Initialisation - Step 0/600 (b) Step 36/600 (c) Final state - Step 600/600
Figure 5.26: Key states in optimising circuit MU2 with a HPWL greedy pol-icy (HPWL=8, Overlap=2).

Figure 5.26(a) quickly converges to a good layout. However, the previous policy per-
forms better on the same layout. The larger triangles representing a net are noticeably
more significant, leading to a higher wirelength approximation. Furthermore, up to 10%
overlap is present in the accompanying quoted HPWL, whereas none was present prior.

5.3.4 Key Conclusions for Multi-Component Iterative Placement
We demonstrated a multi-component environment derived from strong baselines devel-
oped in the previous section, along with implementations of TD3 (Fujimoto et al., 2018)
and SAC (Haarnoja et al., 2018). The infrastructure was used with a revised reward signal
(Equation 4.10) derived from R3 to train general policies. Parameter tests emphasised par-
ticular aspects of the reward function, and ablation tests studied the placement behaviour
in constrained contexts. Supplementary experiments studied the impact of starting with
expert knowledge and the effect of the replay buffer size and resizing strategy.

The variety of data points arising from different circuits under the guidance of an
adaptive and unified reward signal enabled the policy to learn generalisable placement
techniques. The resulting layouts surpassed SA-PCB (Holtz et al., 2020) by 17% and 21%
for policies trained using TD3 and SAC, respectively, measured with routed wirelength.
All evaluations were performed on layouts not seen during training. Training processes
governed by SAC were notably more stable and tended to outperform TD3 in average
return. Furthermore, when analysing the policy patterns in Figures 5.23 - 5.22, elements
of cooperation and competitiveness could be identified as consistent with the empha-
sis on specific aspects of the reward signal. Notable policies were observed to undergo
sequences of actions that yielded low instantaneous rewards, eventually leading to bet-

117

CHAPTER 5. RESULTS & DISCUSSION

ter placements. This analysis was accompanied by an extensive set of experiments that
meet the requirements set by objective four to design and evaluate a multi-component
RL setup for iterative PCB component placement capable of generalisable behaviour.

5.4 Summary
The constructive placement methodology suggested by Mirhoseini et al. (2021) lacks key
information concerning its methodology and mainly requires improving its weak evalua-
tion (Cheng et al., 2023; Xu et al., 2022). In our attempts to apply this approach, we trained
a circuit quality predictor achieving respective accuracies of 72% and 69% for HPWL and
post-routing wirelength on unseen circuits. While better features (Xie et al., 2021; Zhang
et al., 2020) can improve generalisation performance, this was used to encode the obser-
vation space of our placer. We concluded that this methodology has significant scalability
challenges for PCB layout, and our simplified approach did not provide sufficient evidence
of learning placement behaviour using quantitative and qualitative assessments.

Single-component iterative placement demonstrated learning policies in constrained
PCB setups which validated our MDP formulation. We studied the efficacy of learning
policies by mimicking human experts and concluded that while it was successful in partic-
ular instances, generalisation was not feasible due to inconsistent design styles exhibited
by human experts. As a result, the policy receives mixed signals from the reward signal
and observation space (the fixed portion of the layout). We partly addressed the issue
through an adaptive reward signal and demonstrated that distinct placement behaviours
could be evoked within the constrained problem setup. Despite some limitations, the
constrained problem setup provided a perfect environment to study core parameters and
their interactions. The results influenced the decisions that set up the foundations of the
main contribution of this thesis: multi-component iterative placement methodology.

We achieved consistent learning yielding general policies after addressing the remain-
ing inconsistencies through a multi-component setup, where all netlist components con-
tribute to learning a policy. This adds the benefit of generating highly diverse data, as
each component brings unique perspectives aligned with the current policy. Quantita-
tive tests demonstrated a 17% and 21% improvement for TD3 and SAC respectively over
SA-PCB (Holtz et al., 2020) in terms of post-routing wirelength. Qualitative assessments
demonstrated that fundamental placement techniques were learned and revealed emer-
gent properties of collaboration and competition. They also suggested faster placement
convergence that sometimes exceeded an order of magnitude over SA-PCB.

118

6 Conclusions

This thesis aimed to identify novel methods for PCB component placement with RL capa-
ble of learning generalisable placement techniques. In the following sections, we discuss
the contributions, limitations and present avenues for further research.

6.1 Revisiting the Aims and Objectives
In this section, we revisit the objectives of this thesis and describe our approach to achiev-
ing them. Objective four is the culmination and main contribution where we trained RL
policies that learned general behaviour for PCB component placement. To our knowledge,
this work is the first in the EDA community to use RL for an end-to-end AI workflow.

6.1.1 Constructive Placer
Inspired by thework ofMirhoseini et al. (2021), the first objective aimed to assess the fea-
sibility of an RL based constructive component placer by using a circuit quality estimator
as the encoder of the policy. We adapted the current state-of-the-art AI-assisted work-
flow, initially targeting the floorplanning step in the IC design flow (Mirhoseini et al., 2021)
for PCB component placement. A GNN was trained to predict wirelength, achieving an
accuracy of 88.37%, and was used to measure placement quality. With the prediction
layer removed, it was integrated into a custom RL environment with our C++ placement
engine and encoded the problem state. The best-trained policies with TRPO showed lit-
tle evidence of learning and were able to perform component placement, albeit falling
behind SA-PCB (Holtz et al., 2020), a SA placer, by 35% when compared using HPWL.
This objective led to the development of the following tools:

1. OpenAI Gym (Brockman et al., 2016) constructive PCB placement environment in-
corporating a C++ placement engine and placement quality estimator.

2. Dataset of 30 real-world circuits in KiCad (Bautista et al., 2022) format.
119

CHAPTER 6. CONCLUSIONS

3. Configurable dataset generation tool, that arbitrary generates partial placements
and optimises them with SA-PCB (Holtz et al., 2020) to varying degrees.

4. Improved the KicadParser (Yenyi et al., 2020) library, SA-PCB (Holtz et al., 2020)
SA-based PCB placer and A* PcbRouter (Lin et al., 2020). Improvements described
in Appendix A.2.

5. Created a high-performance representation system for circuit boards in C++. This
was packaged in a way that facilitated working with many layouts of arbitrary size.
These software libraries are version controlled, documented with Doxygen and in-
tegrated into Python through SWIG (Beazley, 1996).

6.1.2 Formulating the PCB Component Problem as an RL task
The iterative PCB placement problem was formulated as an RL task. The evaluation was
primarily conducted in Section 5.2.1 and applied to single-component setups in Section
5.2. It was then adapted for multi-component setups in Section 5.3.

6.1.3 Design and Testing of a Single-Component PCB Placer
The single-component placement methodology saw the development of an RL environ-
ment and systematically studied its parameters, three fundamentally different reward sig-
nal categories, discrete and continuous action spaces and four learning algorithms. Exper-
iments motivating agents to mimic expert designers suggested that on-policy algorithms
TRPO and PPO were only successful with discrete action spaces. At the same time, hy-
brid actor-critic methods yielded the best performance with continuous action spaces.
While both methodologies yielded good performance on individual layouts, generalisa-
tion performance was poor. Identifying the cause as inconsistencies arising from expert
data leaking into the problem through the reward signal and observation space (the fixed
portion of the layout), R3 addressed the former by assigning credit based on the agent’s
expertise. Final results demonstrated that desirable circuit placement behaviours could
be evoked, albeit again falling short on generalisation performance. The granular control
offered by continuous action space led to superior performancewhen combinedwith TD3
and SAC, which were retained for future experiments due to their distinctive properties.
This objective necessitated the development of the following tools:

1. Configurable OpenAI Gym (Brockman et al., 2016) environment for iterative single-
component placement.

120

CHAPTER 6. CONCLUSIONS

2. Fully automated, highly parallelisable experimental and testing procedures with au-
tomated result aggregation and .pdf report generation.

6.1.4 Multi-Component RL Capable of Generalised PCB Placement
The multi-component environment was adapted from the last objective for addressing
the data inconsistencies from the fixed portion of the layout that leaked through the
observation space. We have engineered a reward signal (Equation 4.10) that allowed
training across distinct circuit layouts and learning generalisable placement techniques.
Experiments displayed that general policies could be learned and emergent collaborative
or competitive behaviour could be evoked conditional on the emphasised parameters in
the reward signal. Results on average showed 17% and 21% (Table 5.16) reduction in
post-routing wirelength compared with SA-PCB for policies trained with TD3 and SAC,
respectively. Faster convergence to solution was observed to be more than an order of
magnitude. We attribute these improvements to selecting RL as a method of optimisation
since the strategy of measuring task performance is similar in both cases. Our approach
towards generalisation required the agents to autonomously identify what makes a good
placement and then learn placement policies. Additionally, the placement scenarios col-
lected must be consistent with the agent’s definition of ’good’ placement. We achieved
this by removing all expert-attributed elements and allowing the policy to control all com-
ponents. The attainment of this objective is the main contribution of this work, and is the
first to demonstrate the use of RL for learning general policies that automate placement
tasks end-to-end. This objective delivered the following:

1. A custom multi-component environment for iterative PCB component placement
2. Vanilla implementation of TD3 (Fujimoto et al., 2018) and SAC (Haarnoja et al.,

2018) with a resizeable replay buffer and associated resizing strategies.
3. Fully automated, highly parallelisable experimental and testing procedures with au-

tomated result aggregation and .pdf report generation.

6.2 Limitations
This thesis brings relevant contributions to the field of EDAbut is not free from limitations.
In this section, we outline the shortcomings of the studied methodologies and suggest
potential solutions to overcome them.

121

CHAPTER 6. CONCLUSIONS

6.2.1 Limitations of Constructive Placement
We witnessed poor layout performance with no clear evidence of generalisation in our
approach derived from the state-of-the-art AI floorplanner (Mirhoseini et al., 2021). This
research has drawnmuch praise (Hao et al., 2022;Huang et al., 2021; Khailany et al., 2020;
Lopera et al., 2021) for being innovative and the first to automate an EDA task in an end-
to-end using AI techniques. However, it was also critiqued for its inability to generalise
(Crocker, 2021; Xu et al., 2022). We have found that the research makes ambitious claims
that were not reflected in the adopted processes. For instance, the results were reported
after a process coined domain adaptation in which a pre-trained policy was fine-tuned
on the circuit that would later be used for its evaluation. Additionally, while the general
methodology was presented, the details were not adequately documented, making it dif-
ficult for us to replicate their work without assumptions. Cheng et al. (2023) assessed
the methodology and concluded that their results were not reproducible on open bench-
marks. Despite this, limitations to scale to practical problem sizes were discussed in detail
in Section 5.1.3, including the conflict between an extensive action space and resolution.
This thesis has shown that iterative placement is superior to constructive approaches on
small circuits, and while the latter has its merits, perhaps it is better utilised in a hybrid
approach or as an alternative to random initialisation.

6.2.2 Evaluation in terms of Post-Routing Wirelength
While we averaged multiple placement runs starting from different initial conditions and
configured the router to make extensive efforts in finding optimal routes, the strategy has
potential for improvement. Future evaluation strategies should include different routing
tools, for instance, the open-source Freerouting (Wirtz, 2023) and emerging commercial
alternatives , to increase confidence in the results and minimise potential biases. Such a
strategy has also been witnessed in recent literature by Cheng et al. (2022).

6.2.3 Sub-Optimal Weighting of Adaptive Reward Parameters
We observed that the best performance was obtained by associating a high cost with
wirelength at the expense of overlap. The result yielded placements with shorter wire-
length than SA, albeit with a lower frequency of overlap-free layouts. Prioritising the
wirelength dimensions over the overlap term in the multi-objective function is advanta-
geous because future work can implement a post-processing legalisation step to resolve
minor overlaps. However, since two flavours of wirelength are introduced the trade-off
between the two is underexplored and is potentially dependent on the particular con-

122

CHAPTER 6. CONCLUSIONS

nectivity of a given component. Literature tackling similar problems (Ismail et al., 2012)
showed that wrapping the weighting of individual parameters in the cost functions into
yet another optimisation processmay yield improved performance. Our approach of using
pre-defined weighting places the performance evaluation at a disadvantage since more
sophisticated approaches like Pareto-based optimization methods or evolutionary algo-
rithms may lead to better results regarding wirelength performance and consistency of
overlap-free placements.

6.3 Future Work
Weconclude this thesis by briefly discussing several potential avenues for future research.
The modular and automated design methodology in Chapter 4 offers ample flexibility for
integrating improvements. The independent evaluations for each task in Chapter 5 can
help guide our recommendations for where future effort should be invested.

6.3.1 Expand the Multi-Component Setup
The multi-component setup was constrained in the interest of time and to limit our scope
by focusing on generalisation to unseen layouts. Two improvements can be made to the
policy to enhance its applicability to a larger class of circuits. First, the policy’s action space
currently restricts placement to a single side of the PCB and would require the addition
of an extra output that dictates on which side the component is placed. Secondly, the
observation space only supports two-terminal components and can be expanded to work
with multi-pin devices to cater for more circuits. Including these two features will create
a much larger class of circuits with even more significant practical applicability.

Our application to general-purpose component placement represents a proof of con-
ceptwith implications formore ambitious co-optimisation applications, including thermal-
aware placement, high power placement and high-speed layout. Limited time and com-
putation resources restricted further improvements to problem setup andmore extensive
hyperparameter optimisation. Furthermore, parallelising the data collection process will
decrease training runtime and expedite iterative prototyping cycles. Consequently, our
research presents numerous opportunities for additional investigation, with significant
practical applicability and potential for commercialisation.

Minimise the gap between an academic RL task and practical applicability by robustly
integrating the policy as a KiCad (Bautista et al., 2022) plugin. While our result is a proof of
concept and may require further development before this step is feasible, engaging with
the public will ensure that the research remains focused on solving real-world circuits and

123

CHAPTER 6. CONCLUSIONS

is met with timely and appropriate critique from the community. Additionally, the open-
source community may alleviate some of the challenges associated with the long-term
accessibility and maintainability of software tools.

6.3.2 Investigate the Offline Reinforcement Learning
Our single-component experiments which assigned credit depending on how well the
agent’s placement reflected that of the expert designer, suggested significant limitations
to generalisation due to inconsistencies arising from different expert designers (Section
5.2.6). However, key trajectories from the multi-component learning setup can be col-
lected and through offline RL used to learn potentially better general placement policies
while also reducing learning time. First, we have outlined that it can be challenging to
learn good policies, which is exacerbated by long training time due to image-processing-
based methods for deriving observations. Secondly, our demonstrations illustrated that
collaborative or competitive placement styles could be evoked thus a potentially bet-
ter general policy can be learned from a dataset crafted from many training runs. Such
an approach can potentially yield better general policies and online learning can be re-
served for fine-tuning policies for particular domains. For instance, placement for digital,
analogue or mixed-signal circuits, which have unique characteristics and also, placement
co-optimisation with thermals or parasitics amongst many others.

6.3.3 Improve Feature Extraction and Move Beyond Wirelength
We provide three pieces of information to the RL agent. A description of the environment
surrounding the component (Section 4.2.3.1 and 4.3.2), vector information for guidance
to the goal area (Section 4.2.3.2) and information relating to its size and positioning and
orientation. These features aremanually derived, and literature shows that an end-to-end
learning approach may yield better results (Badia et al., 2020; Mnih et al., 2013, 2015).
More specifically, CNNsmay be used to extract translation and rotation invariant features
from a limited visual field surrounding the component. GNNs may be used to extract
contextual positional information while considering all pins connected by a net.

Convolutionmethods on graph data have been successful in awide range of prediction
tasks, including net length and critical path estimation (Xie et al., 2021), routability (Kirby
et al., 2019) and power estimation (Zhang et al., 2020), amongst others. GNNsmay also be
useful for understanding relations between components and, through RL, make decisions
that are not solely motivated by wirelength minimisation. PCB design engineers rarely
think in terms of wirelength except for high-speed layout. This information may be used

124

CHAPTER 6. CONCLUSIONS

to motivate novel placement behaviours that are not driven by wirelength but by problem
constraints. For instance, a decoupling capacitor should introduce as little wirelength
as possible for physical reasons (a small inductance is associated with a short trace and
will allow the delivery of power bursts with minimal resistance to current). However, by
design, a low-speed interface connector may be required at a specific location on the
circuit board that introduces significant wirelength.

6.3.4 Improve Policy Performance
The seminal Neuroevolution (Stanley and Miikkulainen, 2002) generated exciting results
on small problems. However, even with an indirect encoding scheme (Stanley, 2007), it
failed to scale to more extensive networks necessary for problems with large state spaces
such as the one tackled in this thesis. Evolutionary Reinforcement Learning (ERL) is an
emerging area of research that takes a hybrid approach by combining gradient-based and
evolutionary learning. Sigaud (2022) survey a broad body of literature on the topic and
classify algorithms into four categories. The notable work by Bodnar et al. (2020) uses
DDPG (Lillicrap et al., 2015) in conjunction with an improved GA that is adapted for re-
producing neural networks without the catastrophic forgetting inherent to mutation and
crossover operations. As a result, they propose more sophisticated genetic operators that
allow sufficiently large policies to train and scale better. The original authors note that
their novel ERL outperforms PPO (Schulman et al., 2017) and TD3 (Fujimoto et al., 2018)
on all five robot locomotion environments from the OpenAI Gym Brockman et al. (2016).
Our research has outlined the importance of varied data points that consistently repre-
sent the problem. Using a more rigorous population-based learning method is another
way to promote learning distinct behaviours from the same neural network parameters.

More extensive training can also be performed by introducing randomness to over-
come the effects of initial conditions. Components in the multi-component approach
were observed undergoing a sequence of deteriorating actions in pursuit of a placement
that better co-locates them to their neighbours (Figure 5.25). This was especially evident
in scenarios where wirelength was emphasised. However, as noted earlier, it tends to
make it harder to achieve overlap-free layouts. Therefore adding more variation during
training through perturbation (e.g. randomly swapping two components) may provide ex-
amples of challenging situationswhere the policymay learn increasingly robust placement
techniques. During inference, we expect this to motivate the policy to make a sequence
of actions that will ultimately lead to consistently better results.

125

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga,
R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke,
V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. TensorFlow:
Large-scale machine learning on heterogeneous systems, 2015. Software available from tensorflow.org.

Adya, S. N. and Markov, I. L. Consistent placement of macro-blocks using floorplanning and standard-cell placement. In
Proceedings of the 2002 International Symposium on Physical Design, ISPD ’02, page 12–17, New York, NY, USA, 2002.
Association for Computing Machinery. ISBN 1581134606. doi: 10.1145/505388.505392.

Adya, S. N., Chaturvedi, S., Roy, J. A., Papa, D. A., andMarkov, I. L. Unification of partitioning, placement and floorplanning.
In Proceedings of the 2004 IEEE/ACM International Conference on Computer-Aided Design, ICCAD ’04, page 550–557,
USA, 2004. IEEE Computer Society. ISBN 0780387023. doi: 10.1109/ICCAD.2004.1382639.

Agnesina, A., Chang, K., and Lim, S. K. Vlsi placement parameter optimization using deep reinforcement learning. pages
1–9. ACM, 11 2020. ISBN 9781450380263. doi: 10.1145/3400302.3415690.

Agnesina, A., Rajvanshi, P., Yang, T., Pradipta, G., Jiao, A., Keller, B., Khailany, B., and Ren, H. Autodmp: Automated
dreamplace-based macro placement. In Proceedings of the 2023 International Symposium on Physical Design, ISPD ’23,
page 149–157, New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9781450399784. doi: 10.
1145/3569052.3578923.

Agnihotri, A., Yildiz, M., Khatkhate, A., Mathur, A., Ono, S., and Madden, P. Fractional cut: improved recursive bisection
placement. In ICCAD-2003. International Conference on Computer Aided Design (IEEE Cat. No.03CH37486), pages 307–
310, San Jose, CA, USA, 2003. IEEE. ISBN 978-1-58113-762-0. doi: 10.1109/ICCAD.2003.1257685.

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. Optuna: A next-generation hyperparameter optimization frame-
work. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD
’19, page 2623–2631, New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450362016. doi:
10.1145/3292500.3330701.

Alexandridis, A., Paizis, E., Chondrodima, E., and Stogiannos, M. A particle swarm optimization approach in printed circuit
board thermal design. Integrated Computer-Aided Engineering, 24:143–155, 3 2017. ISSN 10692509. doi: 10.3233/
ICA-160536.

Alpert, C. J. The ispd98 circuit benchmark suite. In Proceedings of the 1998 International Symposium on Physical Design,
ISPD ’98, page 80–85, New York, NY, USA, 1998. Association for Computing Machinery. ISBN 158113021X. doi:
10.1145/274535.274546.

Atwood, J. and Towsley, D. Diffusion-convolutional neural networks. In Proceedings of the 30th International Conference
on Neural Information Processing Systems, NIPS’16, page 2001–2009, Red Hook, NY, USA, 2016. Curran Associates Inc.
ISBN 9781510838819.

126

REFERENCES

Badia, A. P., Piot, B., Kapturowski, S., Sprechmann, P., Vitvitskyi, A., Guo, D., and Blundell, C. Agent57: Outperforming the
atari human benchmark. In Proceedings of the 37th International Conference on Machine Learning, ICML’20. JMLR.org,
2020.

Badriyah, T., Setyorini, F., and Yuliawan, N. The implementation of genetic algorithm and routing lee for pcb design
optimization. 2016 International Conference on Informatics and Computing, ICIC 2016, pages 148–153, 2017. doi:
10.1109/IAC.2016.7905706.

Bautista, R. F., Charras, J.-P., Evans, J., Hillbrand, S., McInerney, I., Pointhuber, T., Roszko, M., Stambaugh, W., Wielgus, M.,
Wlostowski, T., and et al. Kicad eda, Nov 2022.

Beazley, D. M. Swig: An easy to use tool for integrating scripting languages with c and c++. In Proceedings of the 4th
Conference on USENIX Tcl/Tk Workshop, 1996 - Volume 4, TCLTK’96, page 15, USA, 1996. USENIX Association.

Bergstra, J., Yamins, D., and Cox, D. D. Making a science of model search: Hyperparameter optimization in hundreds of
dimensions for vision architectures. In Proceedings of the 30th International Conference on International Conference on
Machine Learning - Volume 28, ICML’13, page I–115–I–123. JMLR.org, 2013. doi: 10.5555/3042817.3042832.

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. Algorithms for hyper-parameter optimization. In Proceedings of the 24th
International Conference onNeural Information Processing Systems, NIPS’11, page 2546–2554, Red Hook, NY, USA, 2011.
Curran Associates Inc. ISBN 9781618395993. doi: 10.5555/2986459.2986743.

Bishop, C. Pattern Recognition and Machine Learning. Information Science and Statistics. Springer New York, 2016. ISBN
9781493938438.

Bodnar, C., Day, B., and Lió, P. Proximal distilled evolutionary reinforcement learning. Proceedings of the AAAI Conference
on Artificial Intelligence, 34:3283–3290, 4 2020. ISSN 2374-3468. doi: 10.1609/aaai.v34i04.5728.

Bradski, G. and Kaehler, A. Learning OpenCV: Computer vision with the OpenCV library. " O’Reilly Media, Inc.", 2008.
Brenner, U. and Struzyna, M. Faster and better global placement by a new transportation algorithm. In Proceedings of

the 42nd Annual Design Automation Conference, DAC ’05, page 591–596, New York, NY, USA, 2005. Association for
Computing Machinery. ISBN 1595930582. doi: 10.1145/1065579.1065733.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W. Openai gym, 2016.
Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Vandergheynst, P. Geometric deep learning: Going beyond euclidean

data. IEEE Signal Processing Magazine, 34:18–42, 7 2017. ISSN 1053-5888. doi: 10.1109/MSP.2017.2693418.
Bruna, J., Zaremba,W., Szlam, A., and LeCun, Y. Spectral networks and locally connected networks on graphs. arXiv preprint

arXiv:1312.6203, 12 2013. doi: 10.48550/arxiv.1312.6203.
Bustany, I. S., Chinnery, D., Shinnerl, J. R., and Yutsis, V. Ispd 2015 benchmarkswith fence regions and routing blockages for

detailed-routing-driven placement. In Proceedings of the 2015 Symposium on International Symposium on Physical Design,
ISPD ’15, page 157–164, New York, NY, USA, 2015. Association for Computing Machinery. ISBN 9781450333993.
doi: 10.1145/2717764.2723572.

Chan, T., Cong, J., and Sze, K. Multilevel generalized force-directed method for circuit placement. In Proceedings of the
2005 International Symposium on Physical Design, ISPD ’05, page 185–192, New York, NY, USA, 2005. Association for
Computing Machinery. ISBN 1595930213. doi: 10.1145/1055137.1055177.

Chan, T. F., Sze, K., Shinnerl, J. R., and Xie, M. mPL6: Enhanced Multilevel Mixed-Size Placement with Congestion Control,
pages 247–288. Springer US, 2007. ISBN 978-0-387-68739-1. doi: 10.1007/978-0-387-68739-1_10.

Chan, W.-T. J., Ho, P.-H., Kahng, A. B., and Saxena, P. Routability optimization for industrial designs at sub-14nm process
nodes using machine learning. In Proceedings of the 2017 ACM on International Symposium on Physical Design, ISPD
’17, page 15–21, New York, NY, USA, 2017. Association for Computing Machinery. ISBN 9781450346962. doi:
10.1145/3036669.3036681.

127

REFERENCES

Chen, T. and Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’16, page 785–794, New York, NY, USA, 2016. Association
for Computing Machinery. ISBN 9781450342322. doi: 10.1145/2939672.2939785.

Chen, T. C., Jiang, Z. W., Hsu, T. C., Chen, H. C., and Chang, Y. W. Ntuplace3: An analytical placer for large-scale mixed-size
designs with preplaced blocks and density constraints. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 27:1228–1240, 2008. ISSN 02780070. doi: 10.1109/TCAD.2008.923063.

Cheng, C. K., Kahng, A. B., Kang, I., and Wang, L. Replace: Advancing solution quality and routability validation in global
placement. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 38:1717–1730, 2019. ISSN
19374151. doi: 10.1109/TCAD.2018.2859220.

Cheng, C. K., Ho, C. T., and Holtz, C. Net separation-oriented printed circuit board placement via margin maximization.
Proceedings of the Asia and South Pacific Design Automation Conference, ASP-DAC, 2022-Janua:288–293, 2022. doi:
10.1109/ASP-DAC52403.2022.9712480.

Cheng, C.-K., Kahng, A. B., Kundu, S., Wang, Y., andWang, Z. Assessment of Reinforcement Learning for Macro Placement.
March 2023. arXiv:2302.11014 [cs].

Cheng, H. C., Huang, Y. C., and Chen, W. H. A force-directed-based optimization scheme for thermal placement design of
mcms. IEEE Transactions on Advanced Packaging, 30:56–67, 2007. ISSN 15213323. doi: 10.1109/TADVP.2006.890211.

Chiou, C. H., Chang, C. H., Chen, S. T., and Chang, Y. W. Circular-contour-based obstacle-aware macro placement.
volume 25-28-January-2016, pages 172–177. Institute of Electrical and Electronics Engineers Inc., 3 2016. ISBN
9781467395694. doi: 10.1109/ASPDAC.2016.7428007.

Cohoon, J. P., Hegde, S. U., Martin, W. N., and Richards, D. S. Distributed genetic algorithms for the floorplan design prob-
lem. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 10:483–492, 1991. ISSN 19374151.
doi: 10.1109/43.75631.

Cohoon, J. and Paris, W. Genetic placement. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
6:956–964, 11 1987. ISSN 0278-0070. doi: 10.1109/TCAD.1987.1270337.

Crocker, P. Physically Constrained PCB Placement Using Deep Reinforcement Learning. Massachusetts Institute of Technology,
Department of Electrical Engineering and Computer Science, 2021.

Davidson, S. Itc’99 benchmark circuits - preliminary results. In International Test Conference 1999. Proceedings (IEEE Cat.
No.99CH37034), pages 1125–1125, 1999. doi: 10.1109/TEST.1999.805857.

DeepPCB. Pure ai powered, cloud-naitve pcb routing. https://deeppcb.ai, 2023.
Defferrard, M., Bresson, X., and Vandergheynst, P. Convolutional neural networks on graphs with fast localized spectral

filtering. In Proceedings of the 30th International Conference on Neural Information Processing Systems, NIPS’16, page
3844–3852, Red Hook, NY, USA, 2016. Curran Associates Inc. ISBN 9781510838819.

Fey, M. and Lenssen, J. E. Fast graph representation learning with PyTorch Geometric. In ICLRWorkshop on Representation
Learning on Graphs and Manifolds. arXiv, 2019. doi: 10.48550/arxiv.1903.02428.

Fujimoto, S., van Hoof, H., and Meger, D. Addressing function approximation error in actor-critic methods. In Dy, J. and
Krause, A., editors, Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pages 1587–1596. PMLR, 10–15 Jul 2018.

Gao, X., Zhang, H., Liu, M., Shen, L., Pan, D. Z., Lin, Y., Wang, R., and Huang, R. Interactive analog layout editing with instant
placement and routing legalization. Trans. Comp.-Aided Des. Integ. Cir. Sys., 42(3):698–711, mar 2023. ISSN 0278-0070.
doi: 10.1109/TCAD.2022.3190234.

Garey, M., Johnson, D., and Stockmeyer, L. Some simplified np-complete graph problems. Theoretical Computer Science, 1
(3):237–267, 1976. ISSN 0304-3975. doi: https://doi.org/10.1016/0304-3975(76)90059-1.

128

https://deeppcb.ai

REFERENCES

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. Neural message passing for quantum chemistry. In
Proceedings of the 34th International Conference onMachine Learning - Volume 70, ICML’17, page 1263–1272. JMLR.org,
2017.

Gori, M., Monfardini, G., and Scarselli, F. A newmodel for learning in graph domains. In Proceedings. 2005 IEEE International
Joint Conference on Neural Networks, 2005., volume 2, pages 729–734 vol. 2, 2005. doi: 10.1109/IJCNN.2005.1555942.

Guo, Z. and Lin, Y. Differentiable-timing-driven global placement. In Proceedings of the 59th ACM/IEEE Design Automa-
tion Conference, DAC ’22, page 1315–1320, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
9781450391429. doi: 10.1145/3489517.3530486.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning
with a stochastic actor. In Dy, J. and Krause, A., editors, Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pages 1861–1870. PMLR, 10–15 Jul 2018.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive representation learning on large graphs. In Proceedings of the 31st
International Conference onNeural Information Processing Systems, NIPS’17, page 1025–1035, Red Hook, NY, USA, 2017.
Curran Associates Inc. ISBN 9781510860964.

Hanin, B. Universal function approximation by deep neural nets with bounded width and relu activations. Mathematics, 7
(10):992, 10 2019. ISSN 2227-7390. doi: 10.3390/math7100992.

Hao, R., Cai, Y., and Zhou, Q. Intelligent and kernelized placement: A survey. Integration, 86:44–50, 2022. ISSN 01679260.
doi: 10.1016/j.vlsi.2022.05.002.

Hatta, K.,Wakabayashi, S., andKoide, T. Solving the rectangular packing problemby an adaptive ga based on sequence-pair.
volume 1999-January, pages 181–184. Institute of Electrical and Electronics Engineers Inc., 1999. ISBN 078035012X.
doi: 10.1109/ASPDAC.1999.759990.

Henaff, M., Bruna, J., and LeCun, Y. Deep convolutional networks on graph-structured data. arXiv preprint
arXiv:1506.05163, 6 2015. doi: 10.48550/arxiv.1506.05163.

Ho, C.-T., Ho, A., Fojtik, M., Kim, M., Wei, S., Li, Y., Khailany, B., and Ren, H. Nvcell 2: Routability-driven standard cell
layout in advanced nodes with lattice graph routability model. In Proceedings of the 2023 International Symposium
on Physical Design, ISPD ’23, page 44–52, New York, NY, USA, 2023a. Association for Computing Machinery. ISBN
9781450399784. doi: 10.1145/3569052.3578920.

Ho, C.-T., Ho, A., Fojtik, M., Kim, M., Wei, S., Li, Y., Khailany, B., and Ren, H. NVCell 2: Routability-Driven Standard Cell
Layout in Advanced Nodes with Lattice Graph Routability Model. In Proceedings of the 2023 International Symposium
on Physical Design, pages 44–52, Virtual Event USA, March 2023b. ACM. ISBN 978-1-4503-9978-4. doi: 10.1145/
3569052.3578920.

Hoffman, M. W., Shahriari, B., Aslanides, J., Barth-Maron, G., Momchev, N., Sinopalnikov, D., Stańczyk, P., Ramos, S.,
Raichuk, A., Vincent, D., Hussenot, L., Dadashi, R., Dulac-Arnold, G., Orsini, M., Jacq, A., Ferret, J., Vieillard, N.,
Ghasemipour, S. K. S., Girgin, S., Pietquin, O., Behbahani, F., Norman, T., Abdolmaleki, A., Cassirer, A., Yang, F., Baumli,
K., Henderson, S., Friesen, A., Haroun, R., Novikov, A., Colmenarejo, S. G., Cabi, S., Gulcehre, C., Paine, T. L., Srinivasan,
S., Cowie, A., Wang, Z., Piot, B., and de Freitas, N. Acme: A research framework for distributed reinforcement learning.
arXiv preprint arXiv:2006.00979, 2020.

Holtz, C., Merrill, D. J., and Woo, M. Sa-pcb: Simulated annealing-based placement for pcb layout. https://github.
com/The-OpenROAD-Project/SA-PCB, 2020. 2022, December 20.

Hornik, K., Stinchcombe, M., andWhite, H. Multilayer feedforward networks are universal approximators. Neural Networks,
2(5):359–366, 1989. ISSN 0893-6080. doi: https://doi.org/10.1016/0893-6080(89)90020-8.

Hsu, M.-K., Chang, Y.-W., and Balabanov, V. Tsv-aware analytical placement for 3d ic designs. In Proceedings of the
48th Design Automation Conference, DAC ’11, page 664–669, New York, NY, USA, 2011. Association for Computing
Machinery. ISBN 9781450306362. doi: 10.1145/2024724.2024875.

129

https://github.com/The-OpenROAD-Project/SA-PCB
https://github.com/The-OpenROAD-Project/SA-PCB

REFERENCES

Hu, B. andMarek-Sadowska, M. Multilevel fixed-point-addition-based vlsi placement. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 24:1188–1203, 8 2005. ISSN 02780070. doi: 10.1109/TCAD.2005.850802.

Huang, G., Hu, J., He, Y., Liu, J., Ma, M., Shen, Z., Wu, J., Xu, Y., Zhang, H., Zhong, K., Ning, X., Ma, Y., Yang, H., Yu, B., Yang,
H., and Wang, Y. Machine learning for electronic design automation: A survey. ACM Transactions on Design Automation
of Electronic Systems, 26(5), jun 2021. ISSN 1084-4309. doi: 10.1145/3451179.

Huang, Y.-H., Xie, Z., Fang, G.-Q., Yu, T.-C., Ren, H., Fang, S.-Y., Chen, Y., and Hu, J. Routability-driven macro placement
with embedded cnn-based predictionmodel. In 2019Design, Automation & Test in Europe Conference & Exhibition (DATE),
pages 180–185, 2019. doi: 10.23919/DATE.2019.8715126.

IPC. Generic Standard on printed board design. IPC, 2012.
Ismail, F. S., Yusof, R., and Khalid, M. Optimization of electronics component placement design on pcb using self organizing

genetic algorithm (soga). Journal of Intelligent Manufacturing, 23:883–895, 2012. ISSN 09565515. doi: 10.1007/
s10845-010-0444-x.

Jindal, T., Alpert, C. J., Hu, J., Li, Z., Nam, G.-J., and Winn, C. B. Detecting tangled logic structures in vlsi netlists. In
Proceedings of the 47th Design Automation Conference, DAC ’10, page 603–608, New York, NY, USA, 2010. Association
for Computing Machinery. ISBN 9781450300025. doi: 10.1145/1837274.1837422.

Jones, D. and Harris, i. PCB Design Tutorial. David Jones, Australia, 1st edition, 2004.
Kaeslin, H. Digital Integrated Circuit Design: From VLSI Architectures to CMOS Fabrication. Cambridge University Press, USA,

1st edition, 2008. ISBN 0521882672. doi: 10.5555/1817175,.
Kahng, A. B. andWang, Q. A faster implementation of aplace. In Proceedings of the 2006 International Symposium on Physical

Design, ISPD ’06, page 218–220, New York, NY, USA, 2006. Association for ComputingMachinery. ISBN 1595932992.
doi: 10.1145/1123008.1123057.

Kahng, A. B., Lienig, J., Markov, I. L., and Hu, J. VLSI Physical Design: From Graph Partitioning to Timing Closure. Springer
Publishing Company, Incorporated, 2nd edition, 2022. ISBN 9783030964146. doi: 10.1007/978-3-030-96415-3.

Karypis, G., Aggarwal, R., Kumar, V., and Shekhar, S. Multilevel hypergraph partitioning: applications in vlsi domain. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 7:69–79, 3 1999. ISSN 1063-8210. doi: 10.1109/92.748202.

Khailany, B., Ren, H., Dai, S., Godil, S., Keller, B., Kirby, R., Klinefelter, A., Venkatesan, R., Zhang, Y., Catanzaro, B., and
Dally, W. J. Accelerating chip design with machine learning. IEEE Micro, 40:23–32, 11 2020. ISSN 0272-1732. doi:
10.1109/MM.2020.3026231.

Kim, M.-C. and Markov, I. L. Complx: A competitive primal-dual lagrange optimization for global placement. In Proceedings
of the 49th Annual Design Automation Conference, DAC ’12, page 747–752, New York, NY, USA, 2012. Association for
Computing Machinery. ISBN 9781450311991. doi: 10.1145/2228360.2228496.

Kim, M. C., Lee, D. J., and Markov, I. L. Simpl: An effective placement algorithm. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 31:50–60, 1 2012a. ISSN 02780070. doi: 10.1109/TCAD.2011.2170567.

Kim, M.-C., Viswanathan, N., Alpert, C. J., Markov, I. L., and Ramji, S. Maple: Multilevel adaptive placement for mixed-size
designs. In Proceedings of the 2012 ACM International Symposium on International Symposium on Physical Design, ISPD
’12, page 193–200, New York, NY, USA, 2012b. Association for Computing Machinery. ISBN 9781450311670. doi:
10.1145/2160916.2160958.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 12 2014. doi:
10.48550/arxiv.1412.6980.

Kipf, T. N. and Welling, M. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308, 11 2016. doi: 10.48550/
arxiv.1611.07308.

130

REFERENCES

Kipf, T. N. and Welling, M. Semi-supervised classification with graph convolutional networks. 5th International Conference
on Learning Representations, ICLR 2017 - Conference Track Proceedings, pages 1–14, 2017.

Kirby, R., Godil, S., Roy, R., and Catanzaro, B. Congestionnet: Routing congestion prediction using deep graph neural
networks. volume 2019-October, pages 217–222. IEEE, 10 2019. ISBN 978-1-7281-3915-9. doi: 10.1109/VLSI-SoC.
2019.8920342.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. Optimization by simulated annealing. Science, 220(4598):671–680, 1983.
doi: 10.1126/science.220.4598.671.

Kleinhans, J. M., Sigl, G., Johannes, F. M., and Antreich, K. J. Gordian: Vlsi placement by quadratic programming and slicing
optimization. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 10:356–365, 1991. ISSN
19374151. doi: 10.1109/43.67789.

Kudva, P., Sullivan, A., and Dougherty, W. Metrics for structural logic synthesis. In Proceedings of the 2002 IEEE/ACM
International Conference on Computer-Aided Design, ICCAD ’02, page 551–556, New York, NY, USA, 2002. Association
for Computing Machinery. ISBN 0780376072. doi: 10.1145/774572.774653.

Kullback, S. and Leibler, R. On information and sufficiency. The Annals of Mathematical Statistics, 22:79–86, 1951.
Lee, C. Y. An algorithm for path connections and its applications. IRE Transactions on Electronic Computers, EC-10(3):

346–365, 9 1961. ISSN 0367-7508. doi: 10.1109/TEC.1961.5219222.
Lee, J. Thermal placement algorithm based on heat conduction analogy. IEEE Transactions on Components and Packaging

Technologies, 26(2):473–482, 2003. doi: 10.1109/TCAPT.2003.815091.
Li, W., Li, M., Wang, J., and Pan, D. Z. Utplacef 3.0: A parallelization framework for modern fpga global placement: (invited

paper). In 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), page 922–928. IEEE Press, 2017.
doi: 10.1109/ICCAD.2017.8203879.

Liang, E., Liaw, R., Nishihara, R., Moritz, P., Fox, R., Goldberg, K., Gonzalez, J., Jordan, M., and Stoica, I. RLlib: Abstractions
for distributed reinforcement learning. In Dy, J. and Krause, A., editors, Proceedings of the 35th International Conference
onMachine Learning, volume 80 of Proceedings ofMachine Learning Research, pages 3053–3062. PMLR, 10–15 Jul 2018.

Liao, H., Zhang, W., Dong, X., Poczos, B., Shimada, K., and Burak Kara, L. A deep reinforcement learning approach for
global routing. Journal of Mechanical Design, 142(6), 11 2020. ISSN 1050-0472. doi: 10.1115/1.4045044.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D. Continuous control with deep
reinforcement learning. 9 2015. doi: 10.48550/arxiv.1509.02971.

Lin, T., Chu, C., and Wu, G. Polar 3.0: An ultrafast global placement engine. In Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design, ICCAD ’15, page 520–527. IEEE Press, 2015. ISBN 9781467383899.

Lin, T.-C., Holtz, C., Yenyi, and Merrill, D. J. Printed circuit board (pcb) router. https://github.com/

The-OpenROAD-Project/PcbRouter, 2020. 2022, December 20.
Lin, Y., Jiang, Z., Gu, J., Li, W., Dhar, S., Ren, H., Khailany, B., and Pan, D. Z. Dreamplace: Deep learning toolkit-enabled gpu

acceleration for modern vlsi placement. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
40:748–761, 2021. ISSN 19374151. doi: 10.1109/TCAD.2020.3003843.

Lopera, D. S., Servadei, L., Kiprit, G. N., Hazra, S., Wille, R., and Ecker, W. A survey of graph neural networks for electronic
design automation. In 2021 ACM/IEEE 3rd Workshop on Machine Learning for CAD (MLCAD), pages 1–6. IEEE, 8 2021.
ISBN 978-1-6654-3166-8. doi: 10.1109/MLCAD52597.2021.9531070.

Lu, J., Chen, P., Chang, C.-C., Sha, L., Huang, D. J.-H., Teng, C.-C., and Cheng, C.-K. Eplace: Electrostatics-based place-
ment using fast fourier transform and nesterov’s method. volume 20, New York, NY, USA, mar 2015a. Association for
Computing Machinery. doi: 10.1145/2699873.

131

https://github.com/The-OpenROAD-Project/PcbRouter
https://github.com/The-OpenROAD-Project/PcbRouter

REFERENCES

Lu, J., Zhuang, H., Chen, P., Chang, H., Chang, C. C., Wong, Y. C., Sha, L., Huang, D., Luo, Y., Teng, C. C., and Cheng,
C. K. Eplace-ms: Electrostatics-based placement for mixed-size circuits. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 34:685–698, 5 2015b. ISSN 02780070. doi: 10.1109/TCAD.2015.2391263.

Lu, J., Zhuang, H., Kang, I., Chen, P., and Cheng, C.-K. Eplace-3d: Electrostatics based placement for 3d-ics. In Proceedings
of the 2016 on International Symposium on Physical Design, ISPD ’16, page 11–18, New York, NY, USA, 2016. Association
for Computing Machinery. ISBN 9781450340397. doi: 10.1145/2872334.2872361.

Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L. The expressive power of neural networks: A view from the width. NIPS’17:
Proceedings of the 31st International Conference on Neural Information Processing Systems, pages 6232–6240, 2017. doi:
https://doi.org/10.48550/arxiv.1709.02540.

Ma, Y., He, Z., Li, W., Zhang, L., and Yu, B. Understanding graphs in eda: From shallow to deep learning. In Proceedings of
the 2020 International Symposium on Physical Design, ISPD ’20, page 119–126, New York, NY, USA, 2020. Association
for Computing Machinery. ISBN 9781450370912. doi: 10.1145/3372780.3378173.

Markov, I. L., Hu, J., and Kim, M. C. Progress and challenges in vlsi placement research. Proceedings of the IEEE, 103:
1985–2003, 2015. ISSN 15582256. doi: 10.1109/JPROC.2015.2478963.

Merrill, D. J. Hungry for Fully Automated Design of Embedded Systems? University of California, San Diego, PhD thesis, 2021.
Micheli, A. Neural network for graphs: A contextual constructive approach. IEEE Transactions on Neural Networks, 20:

498–511, 3 2009. ISSN 1045-9227. doi: 10.1109/TNN.2008.2010350.
Mirhoseini, A., Goldie, A., Yazgan, M., Jiang, J. W., Songhori, E., Wang, S., Lee, Y. J., Johnson, E., Pathak, O., Nazi, A., Pak, J.,

Tong, A., Srinivasa, K., Hang, W., Tuncer, E., Le, Q. V., Laudon, J., Ho, R., Carpenter, R., and Dean, J. A graph placement
methodology for fast chip design. Nature, 594:207–212, 2021. ISSN 14764687. doi: 10.1038/s41586-021-03544-w.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602, 12 2013. doi: 10.48550/arxiv.1312.5602.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K.,
Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., and
Hassabis, D. Human-level control through deep reinforcement learning. Nature, 518:529–533, 2 2015. ISSN 0028-
0836. doi: 10.1038/nature14236.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver, D., and Kavukcuoglu, K. AsynchronousMethods
for Deep Reinforcement Learning. June 2016. arXiv:1602.01783 [cs].

Murata, H., Fujiyoshi, K., Nakatake, S., and Kajitani, Y. Vlsi module placement based on rectangle-packing by the sequence-
pair. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 15:1518–1524, 1996. doi: 10.1109/
43.552084.

Murphy, J. Neural Network Fitness Function for Optimization-based Approaches to PCB Design Automation. Massachusetts
Institute of Technology, Department of Electrical Engineering and Computer Science, 2020.

Naylor, W. C., Donelly, R., and Sha, L. Non-linear optimization system and method for wire length and delay optimization
for an automatic electric circuit placer, 1998.

Niepert, M., Ahmed, M., and Kutzkov, K. Learning convolutional neural networks for graphs. In Balcan, M. F. and Wein-
berger, K. Q., editors, Proceedings of The 33rd International Conference on Machine Learning, volume 48 of Proceedings of
Machine Learning Research, pages 2014–2023, New York, New York, USA, 20–22 Jun 2016. PMLR.

Ning, P., Wang, F., and Ngo, K. D. Automatic layout design for power module. IEEE Transactions on Power Electronics, 28:
481–487, 2013. ISSN 08858993. doi: 10.1109/TPEL.2011.2180739.

Ning, P., Li, H., Huang, Y., and Kang, Y. Review of power module automatic layout optimization methods in electric vehicle
applications. Chinese Journal of Electrical Engineering, 6:8–24, 2020. ISSN 20961529. doi: 10.23919/CJEE.2020.000015.

132

REFERENCES

Oskay, W. and Schlaepfer, E. Open circuits. No Starch Press, San Francisco, CA, November 2022.
Pan, S., Hu, R., Long, G., Jiang, J., Yao, L., and Zhang, C. Adversarially regularized graph autoencoder for graph embedding.

In Proceedings of the 27th International Joint Conference on Artificial Intelligence, IJCAI’18, page 2609–2615. AAAI Press,
2018. ISBN 9780999241127.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison,
A., Köpf, A., Yang, E. Z., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S.
Pytorch: An imperative style, high-performance deep learning library. CoRR, abs/1912.01703, 2019.

Preston, W. J. The difference between tht and smt, 7 2018. (2022, December 7).
Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., and Dormann, N. Stable-baselines3: Reliable reinforcement

learning implementations. Journal of Machine Learning Research, 22(268):1–8, 2021.
Raileanu, R., Goldstein, M., Yarats, D., Kostrikov, I., and Fergus, R. Automatic data augmentation for generalization in

reinforcement learning. In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W., editors, Advances in
Neural Information Processing Systems, volume 34, pages 5402–5415. Curran Associates, Inc., 2021.

Ren, H., Nath, S., Zhang, Y., Chen, H., and Liu, M. Why are graph neural networks effective for eda problems? (invited
paper). In Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design, ICCAD ’22, New York,
NY, USA, 2022. Association for Computing Machinery. ISBN 9781450392174. doi: 10.1145/3508352.3561093.

Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological
Review, 65:386–408, 1958. doi: 10.1037/h0042519.

Roy, J. A., Papa, D. A., Adya, S. N., Chan, H. H., Ng, A. N., Lu, J. F., and Markov, I. L. Capo: Robust and scalable open-source
min-cut floorplacer. Proceedings of the International Symposium on Physical Design, pages 224–226, 2005.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning representations by back-propagating errors. Nature (London),
323(6088):533–536, 1986. ISSN 0028-0836. doi: 10.1038/323533a0.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. Trust region policy optimization. Proceedings of the 32nd
International Conference on Machine Learning, 37:1889–1897, 07–09 Jul 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, pages 1–12, 2017. doi: 10.48550/arxiv.1707.06347.

Sechen, C. and Sangiovanni-Vincentelli, A. The timberwolf placement and routing package. IEEE Journal of Solid-State
Circuits, 20:510–522, 4 1985. ISSN 0018-9200. doi: 10.1109/JSSC.1985.1052337.

Sechen, C. and Sangiovanni-Vincentelli, A. Timberwolf3.2: A new standard cell placement and global routing package.
In Proceedings of the 23rd ACM/IEEE Design Automation Conference, DAC ’86, page 432–439. IEEE Press, 1986. ISBN
0818607025.

Sigaud, O. Combining evolution and deep reinforcement learning for policy search: a survey. ACM Transactions on Evolu-
tionary Learning and Optimization, 10 2022. ISSN 2688-299X. doi: 10.1145/3569096.

Simonyan, K. and Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 9 2014. doi: 10.48550/arxiv.1409.1556.

Sperduti, A. and Starita, A. Supervised neural networks for the classification of structures. IEEE Transactions on Neural
Networks, 8:714–735, 5 1997. ISSN 1045-9227. doi: 10.1109/72.572108.

Spindler, P. and Johannes, F. M. Fast and accurate routing demand estimation for efficient routability-driven placement. In
Proceedings of the Conference on Design, Automation and Test in Europe, DATE ’07, page 1226–1231, San Jose, CA, USA,
2007. EDA Consortium. ISBN 9783981080124.

133

REFERENCES

Spindler, P., Schlichtmann, U., and Johannes, F. M. Kraftwerk2 - a fast force-directed quadratic placement approach using
an accurate net model. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 27:1398–1411,
2008. ISSN 02780070. doi: 10.1109/TCAD.2008.925783.

Stanley, K. O. Compositional pattern producing networks: A novel abstraction of development. Genetic Programming and
Evolvable Machines, 8:131–162, 6 2007. ISSN 1389-2576. doi: 10.1007/s10710-007-9028-8.

Stanley, K. and Miikkulainen, R. Efficient evolution of neural network topologies. In Proceedings of the 2002 Congress on
Evolutionary Computation. CEC’02 (Cat. No.02TH8600), volume 2, pages 1757–1762. IEEE, 2002. ISBN 0-7803-7282-4.
doi: 10.1109/CEC.2002.1004508.

Sutton, R. S. and Barto, A. G. Reinforcement learning: an introduction. Adaptive computation and machine learning series.
The MIT Press, Cambridge, Massachusetts, second edition edition, 2018. ISBN 978-0-262-03924-6.

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y. Policy gradient methods for reinforcement learning with function
approximation. In Proceedings of the 12th International Conference on Neural Information Processing Systems, NIPS’99,
page 1057–1063, Cambridge, MA, USA, 1999. MIT Press.

Takuma Seno, M. I. d3rlpy: An offline deep reinforcement library. InNeurIPS 2021Offline Reinforcement LearningWorkshop.
arXiv, December 2021. doi: 10.48550/arxiv.2111.03788.

Ustun, E., Deng, C., Pal, D., Li, Z., and Zhang, Z. Accurate operation delay prediction for fpga hls using graph neural
networks. In Proceedings of the 39th International Conference on Computer-Aided Design, ICCAD ’20, New York, NY,
USA, 2020. Association for Computing Machinery. ISBN 9781450380263. doi: 10.1145/3400302.3415657.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Bengio, Y. Graph attention networks. arXiv preprint
arXiv:1710.10903, 10 2017. doi: 10.48550/arxiv.1710.10903.

Veličković, P. Everything is Connected: Graph Neural Networks. January 2023. arXiv:2301.08210 [cs, stat].
Venkatesan, R., Raina, P., Zhang, Y., Zimmer, B., Dally, W. J., Emer, J., Keckler, S. W., Khailany, B., Shao, Y. S., Wang, M.,

Clemons, J., Dai, S., Fojtik, M., Keller, B., Klinefelter, A., and Pinckney, N. Magnet: A modular accelerator generator for
neural networks. pages 1–8. IEEE, 11 2019. ISBN 978-1-7281-2350-9. doi: 10.1109/ICCAD45719.2019.8942127.

Viswanathan, N. and Chu, C. C. N. Fastplace: Efficient analytical placement using cell shifting, iterative local refinement,
and a hybrid net model. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 24:722–733, 5
2005. ISSN 02780070. doi: 10.1109/TCAD.2005.846365.

Wang, M., Yang, X., and Sarrafzadeh, M. Dragon2000: Standard-cell placement tool for large industry circuits. In Proceed-
ings of the 2000 IEEE/ACM International Conference on Computer-Aided Design, ICCAD ’00, page 260–263. IEEE Press,
2000. ISBN 0780364481. doi: 10.1109/ICCAD.2000.896483.

Watkins, C. J. C. H. and Dayan, P. Q-learning. 8:279–292, 1992.
Wirtz, A. freerouting: Advanced pcb auto-router. https://github.com/freerouting/freerouting, 2023. 2023,

June 18.
Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Yu, P. S. A comprehensive survey on graph neural networks. IEEE

Transactions on Neural Networks and Learning Systems, 32:4–24, 2021. ISSN 21622388. doi: 10.1109/TNNLS.2020.
2978386.

Xie, Z., Huang, Y. H., Fang, G. Q., Ren, H., Fang, S. Y., Chen, Y., and Hu, J. Routenet: Routability prediction for mixed-size
designs using convolutional neural network. IEEE/ACM International Conference on Computer-Aided Design, Digest of
Technical Papers, ICCAD, 2018. ISSN 10923152. doi: 10.1145/3240765.3240843.

Xie, Z., Liang, R., Xu, X., Hu, J., Duan, Y., and Chen, Y. Net2: A graph attention network method customized for pre-
placement net length estimation. In Proceedings of the 26th Asia and South Pacific Design Automation Conference, AS-
PDAC ’21, page 671–677, New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450379991.
doi: 10.1145/3394885.3431562.

134

https://github.com/freerouting/freerouting

REFERENCES

Xu, Q., Geng, H., Chen, S., Yuan, B., Zhuo, C., Kang, Y., andWen, X. Goodfloorplan: Graph convolutional network and rein-
forcement learning-based floorplanning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
41(10):3492–3502, oct 2022. ISSN 0278-0070. doi: 10.1109/TCAD.2021.3131550.

Yang, S. Logic synthesis and optimization benchmarks user guide: version 3.0. Citeseer, 1991.
Yenyi, Lin, T.-C., Holtz, C., , and Merrill, D. J. Kicad file importer/exporter, database, and drc checker. https://github.

com/The-OpenROAD-Project/KicadParser, 2020. 2022, December 20.
Zhang, Y., Ren, H., and Khailany, B. Grannite: Graph neural network inference for transferable power estimation. In 2020

57th ACM/IEEE Design Automation Conference (DAC), pages 1–6, 2020. doi: 10.1109/DAC18072.2020.9218643.
Zhou, Y., Ren, H., Zhang, Y., Keller, B., Khailany, B., and Zhang, Z. Primal: Power inference using machine learning. In

Proceedings of the 56th Annual Design Automation Conference 2019, DAC ’19, New York, NY, USA, 2019. Association for
Computing Machinery. ISBN 9781450367257. doi: 10.1145/3316781.3317884.

135

https://github.com/The-OpenROAD-Project/KicadParser
https://github.com/The-OpenROAD-Project/KicadParser

A Infrastructure and tools

Robust infrastructure and tools are essential for building large and scalable projects. In this
thesis, they allowed effortless parallelisation and automation that, in turn, increased our
confidence in the results and minimised human error throughout. Figure A.1 illustrates
the technology stack adopted. At the lowest levels, it describes the machine used to
run the experiments and the selected operating system. Four frameworks enable the
development of RL models for studying the PCB component placement. These include an
automated testing and report generation facility, traditional place and route tools used for
generating baselines alongside which our work is compared, a purpose-built pcb library
for facilitating managing circuits for training and inference and lastly PyTorch and key
Python packages for constructing our RL models and developing custom environments
for investigating PCB component placement.

Figure A.1: Technology Stack
This section describes critical frameworks and their dependencies that we adopted

or developed for this thesis. First, we discuss the selection of a CAD tool that bridges
real-world PCB design and our algorithms. Next, we examine open source PCB place and

136

APPENDIX A. INFRASTRUCTURE AND TOOLS

route tools adopted for the evaluation baseline and random circuit generation. Following,
we present the circuit netlist representation as a graph and an encapsulating scheme that
facilitates working with multiple layouts and interacting with the file system. Finally, a
fully automated build and packaging system used for all software modules developed in
this thesis is presented.

A.1 KiCAD PCB Design Software Suite
A CAD tool was necessary such that our automatically generated layouts could be re-
viewed, altered and even prepared for manufacturing in a standard way. KiCAD (Bautista
et al., 2022) was selected for this project, motivated primarily by flexibility and ease of
use rather than performance. KiCAD is a suite of tools for EDA that is free and open-
source. It features an integrated environment for designing PCBs, including schematic
capture, circuit simulation, PCB layout and manufacturing file viewer. KiCAD supports
the basic features of PCB layout but lacks advanced features compared to CAD tools
more commonly encountered in the industry. Examples of advanced CAD tools are Al-
tium Designer, Cadence OrCAD schematic capture, Cadence Allegro PCB layout tools,
and Pads by Mentor Graphics. One common feature that sets industrial CAD tools apart
from KiCAD is the advanced simulation tools with a proven track record. The advanced
simulation and layout tools do not contribute additional value to the research project, and
therefore, KiCAD was selected for the following reasons:

• Being open source, the community develops supporting code to parse and manipu-
late the output files. Using available software infrastructure allows us to spend our
time solving problem-related challenges.

• Proprietary tools require licensing, which adds an unnecessary setup overhead. Fur-
thermore, as noted by Huang et al. (2019), educational licenses may have imposed
limitations, such as an upper bound on design size.

• It is easier for other people to reproduce our work.

A.2 PCB Place and Route Tools
SA_PCB (Holtz et al., 2020) and PcbRouter (Lin et al., 2020) are open source tools for
respectively placing and routing components on a PCB. SA_PCB uses SA meta-heuristic
to perform component placement, which can operate directly with .kicad_pcb layouts,

137

APPENDIX A. INFRASTRUCTURE AND TOOLS

and supports any circuit. PcbRouter uses the A* algorithm to create the associated wires
between components. It supports the standard, blind and buried VIAs and thus per-
forms multi-layer routing and advanced features to combat congestion, such as rip-up
and reroute strategies. Similar to SA_PCB, it also directly operates on .kicad_pcb lay-
outs. A third tool called KicadParser (Yenyi et al., 2020) is used behind the scenes to
convert a .kicad_pcb layout into an internal representation. These tools are written in
C++ and were developed due to a research project investigating a fully automated design
of embedded systems and are described further in the PhD thesis by Merrill (2021).

The tool suite lacks general documentation and inline comments describing the pro-
gram’s operation. An effort was placed on manually digging through the source code to
understand the details; however, eventually, we decided to patch the necessary functions
and otherwise leave the core functionality untouched. The following is a list of changes
made to the source code:

1. All three programs were augmented with a command line interface so that bash
scripts could automatically call them.

2. For all programs a Makefile was created with targets for compilation, library gener-
ation and automated tests. They are version controlled and integrated in Jenkins.

3. KicadParser was enhanced to convert .kicad_pcb into our internal .pcb represen-
tation format. More details in the upcoming Appendix A.3

4. Redefinition of component outline for SA_PCB (Holtz et al., 2020).
5. Power nets could be conditionally ignored in SA_PCB (Holtz et al., 2020) and PcbRouter

(Lin et al., 2020) by a command line option.
The command line feature was beneficial when generating random datasets described

in Section 4.1 and when carrying out mass evaluations described in Section 4.3
Concerning update three, SA_PCB interpreted polygons on the courtyard layers as

the area taken by a component on a PCB. This presented a significant problem because
KiCad (Bautista et al., 2022) footprints represent a component’s boundary using lines.
To alter all the PCBs and draw a polygon to represent the area taken by a component
was not a feasible or scalable option. Therefore we applied a modification to extract the
component outline based on the lines. The challengewas that occasionally a component’s
footprint might have an arbitrary number of geometrical shapes drawn on the courtyard
layer, including multiple quadrilaterals of different sizes or outlines defined as irregular
shapes. Our method read all the lines for a given component and then extracted the
largest enclosing quadrilateral to be used as its area in overlap computations.

138

APPENDIX A. INFRASTRUCTURE AND TOOLS

A.3 Netlist Graph
KiCAD (Bautista et al., 2022) represents the user’s design in three separate files, a schematic
.sch file , a netlist .net file and layout .kicad_pcb file. The schematic and layout files are
used for design entry and layout phases, respectively, while the netlist file propagates
the design between the two stages. We are using the layout file, having an extension of
.kicad_pcb, as input containing PCB data. It was chosen because it contains geometrical
descriptions of the components and layout regions not available in the other two files.

As mentioned in Appendix A.2, the place and route programs come with little doc-
umentation, and shared very little in terms of a common structure. Therefore, it was
hard to reuse the internal representation of the layout for modifications by our place-
ment algorithms. Since this was a core function of our work, we converted the hierar-
chical representation of the PCB into a graph, a representation method widely employed
in the literature (Huang et al., 2021; Lopera et al., 2021). Furthermore, in Section 4.1.4
we adopt GNNs for predicting circuit parameters, representing the circuit as a graph at
the source will remove the need for additional pre-processing tasks. Components were
represented as nodes while point-to-point connections as edges, using node and edge ob-
jects respectively. A graph represents the circuit netlist and comprises a vector of node
and another of edge. Table A.1 describes the member variables of the object class node,
and Table A.2 describes the member variables of the object class edge. Expert informa-
tion, also referred to as the best historically known values of specific parameters such as
net length, are also encoded in the graph. It also contains member methods for pruning
sections of the graph, yielding subgraphs, computing HPWL, overlap metrics and more.
Information about the layout region is stored in an object of type board. Currently, it con-
tains the dimensions of the layout area. It may also integrate global design rules, such as
physical layout constraints, in the future.

A.4 Internal Representation
Our algorithms operate directly on the graph and board objects. A pcb object was created
to encapsulate graph and board objects to represent a unified PCB. Additionally, this was
done to ease the moving around of many distinct layouts. An arbitrary amount of pcb
layouts can be stored in a pcb vector and written to or read from a file on the operating
system. This approach streamlines the process of working with multiple layouts. This
simplification was beneficial since a PCB layout is frequently used in a series of tools. By
representing everything in a single file, we minimise the risk of errors, maintain a clean
working directory while retaining the ability to manually review the dataset.

139

APPENDIX A. INFRASTRUCTURE AND TOOLS

feature name description
id; name A unique numerical instance id; Human readable designator.size Component size in mm.position Component coordinate position (x,y) in mm.orientation Orientation in degrees.layer Specifies whether the component is on top or bottom layer (Alwaystop layer).pin count Number of pins / pads the component has.locked Specifies whether the component is movable.type Component type; e.g. capacitor, resistorfunction Component function within the circuit; e.g. decoupling, filtering;pull-up current limiting.

Table A.1: Description of node member variables in circuit netlist.
feature name description
id; name A unique numerical net id; Human readable net name.power rail Indicates whether the type of net, generic or power related.pad size Size of source and destination pins / pads.pad position Position of source and destination pins / pads.

Table A.2: Description of edge member variables in circuit netlist.
The information is encoded hierarchically, with constituents being enclosed within

placeholders. For example, the graph’s nodes are enclosed within begin nodes and end

nodes. This encoding facilitates parsing while visually apparent for manual interpretation.
For troubleshooting and traceability, all PCBs are loggedwith their name and parent name
if they are a subset of another PCB, UNIX timestamp, HPWL and overlap metrics. The
text file in snippet A.1 demonstrates the constituents of a simple .pcb file.

1 filename=<abs-path>/opt_testing_10.pcb

2 timestamp=1665423047

3 pcb begin

4 .kicad_pcb=555_timer.kicad_pcb

5 timestamp=1664918461

6 graph begin

7 hpwl=34.99500100

8 nodes begin

9 <id>,<designator>,<width>,<height>,<x>,<y>,<orientation> ...

10 0,C3,3.3,1.46,116.3,94.2,0,0,0,2,2,0,-1

11 1,LED2,3.35,1.85,104.29,95.72,90,0,0,2,2,0,-1

12 2,R2,3.7,1.9,115.55,88.74,270,0,0,2,2,0,-1

13 3,R3,3.7,1.9,116.45,91.8,180,0,0,2,2,0,-1

140

APPENDIX A. INFRASTRUCTURE AND TOOLS

14 4,R4,3.7,1.9,104.26,91.65,270,0,0,2,2,0,-1

15 5,U1,7.4,5.4,110,90.01,0,0,1,8,8,0,-1

16 nodes end

17 optimals begin

18 <id>,<designator>,<EW>,<HPWL>

19 0,C3,1.70655,23.2538

20 1,LED2,1.89853,11.8441

21 2,R2,1.75134,16.3314

22 3,R3,3.71927,19.6108

23 4,R4,5.1408,5.89343

24 5,U1,1e+06,1e+06

25 optimals end

26 edges begin

27 0,1,2,1.075,0.95,0.8625,0,0,1,0,1,0.95,0.95,-0.75,0,0,1,GND,1

28 0,1,2,1.075,0.95,0.8625,0,0,5,0,1,1.95,0.6,-2.475,-1.905,1,1,GND

,1

29 1,0,1,0.95,0.95,-0.75,0,0,5,0,1,1.95,0.6,-2.475,-1.905,1,1,GND,1

30 0,0,1,1.075,0.95,-0.8625,0,0,3,1,2,1.2,1.4,1,0,0,2,"Net-(C3-Pad1)

",0

31 0,0,1,1.075,0.95,-0.8625,0,0,5,1,2,1.95,0.6,-2.475,-0.635,1,2,"

Net-(C3-Pad1)",0

32 0,0,1,1.075,0.95,-0.8625,0,0,5,5,6,1.95,0.6,2.475,0.635,1,2,"Net

-(C3-Pad1)",0

33 3,1,2,1.2,1.4,1,0,0,5,1,2,1.95,0.6,-2.475,-0.635,1,2,"Net-(C3-

Pad1)",0

34 3,1,2,1.2,1.4,1,0,0,5,5,6,1.95,0.6,2.475,0.635,1,2,"Net-(C3-Pad1)

",0

35 5,1,2,1.95,0.6,-2.475,-0.635,1,5,5,6,1.95,0.6,2.475,0.635,1,2,"

Net-(C3-Pad1)",0

36 1,1,2,0.95,0.95,0.75,0,0,4,1,2,1.2,1.4,1,0,0,3,"Net-(LED2-Pad2)

",0

37 4,0,1,1.2,1.4,-1,0,0,5,2,3,1.95,0.6,-2.475,0.635,1,4,"Net-(R4-

Pad1)",0

38 2,1,2,1.2,1.4,1,0,0,3,0,1,1.2,1.4,-1,0,0,5,"Net-(R2-Pad2)",0

39 2,1,2,1.2,1.4,1,0,0,5,6,7,1.95,0.6,2.475,-0.635,1,5,"Net-(R2-Pad2

)",0

40 3,0,1,1.2,1.4,-1,0,0,5,6,7,1.95,0.6,2.475,-0.635,1,5,"Net-(R2-

Pad2)",0

41 2,0,1,1.2,1.4,-1,0,0,5,3,4,1.95,0.6,-2.475,1.905,1,6,+3V3,2

42 2,0,1,1.2,1.4,-1,0,0,5,7,8,1.95,0.6,2.475,-1.905,1,6,+3V3,2

43 5,3,4,1.95,0.6,-2.475,1.905,1,5,7,8,1.95,0.6,2.475,-1.905,1,6,+3

V3,2

44 edges end

45 graph end

46 board begin

141

APPENDIX A. INFRASTRUCTURE AND TOOLS

47 bb_min_x,100.00000000

48 bb_min_y,80.00000000

49 bb_max_x,120.00000000

50 bb_max_y,100.00000000

51 board end

52 pcb end

53 pcb begin

54 ...

55 pcb end

Listing A.1: Example of a PCB file

A.5 Automated Builds
As stated earlier, the graph and board objects encapsulate the foundational methods
leveraged by higher-level placement algorithms. The pcb objects encapsulate these con-
stituents and provide file input-output methods for easy handling. They are written in
C++ for performance and exposed to Python through SWIG (Beazley, 1996).

Figure A.2 illustrates a typical build process. Static libraries are compiled to be used by
C++ tests and tools dependent on them. Dynamic libraries are generated as a requirement
of SWIG for exposing themethods in Python. SWIG generates Pythonwrappers based on
the libraries’ header files. The wrapper and dynamic libraries are packaged into a wheels

Figure A.2: Illustration of the automated building and testing the C++source code via the bundled Makefiles and particular test cases.
142

APPENDIX A. INFRASTRUCTURE AND TOOLS

(.whl) package to be installed and used across projects. Arising from dependencies across
different tools, automated tests were included to catch errors at an early stage. However,
they attempt to catch common human-related errors. The build process was carried out
using Jenkins, a continuous integration tool, on a virtual machine. A code push to GitHub
automatically triggered the build and test processes.

A.6 RL Framework
Stable Baselines3 (Raffin et al., 2021) is an RL framework that makes cutting-edge algo-
rithms accessible with a few lines of code while allowing flexibility for custom implemen-
tations. Furthermore, a unified interface to multiple RL algorithms and excellent docu-
mentation are desired features for this research project. Competing frameworks include
RLlib Liang et al. (2018), which has commercial backing but is intended for massive scal-
ing across remote machines and not oriented for small projects. d3rply (Takuma Seno,
2021) is another framework; however, it uses offline learning where it trains on previ-
ously collected data. Acme Hoffman et al. (2020) is developed by the research scientist
at DeepMind and is intended for algorithm development. Stable baseline3 satisfied our
practical requirements for using distinct algorithms through a unified interface, reasonable
flexibility, and practical features such as Tensorboard (Abadi et al., 2015) interfacing and

Figure A.3: Depiction of the RL training framework. The process trackinginformation is detailed via callbacks as well as the option to specify a cus-tom neural architecture.
143

APPENDIX A. INFRASTRUCTURE AND TOOLS

vectorised environments. Hence we chose it as the framework for this research project.
In a Stable Baselines3 (Raffin et al., 2021) standard flow, the user sets up an RL al-

gorithm (e.g. TD3 (Fujimoto et al., 2018)) by specifying the algorithm’s hyperparameters
and passes a dictionary containing the neural network configuration. A callback function
is optionally set up to control and monitor the learning process. Since our custom en-
vironment returns the observation as a Python dictionary, we bypass the default neural
network architectures and derive a custommodel from the base class the framework pro-
vides. Furthermore, we override the default callback to monitor and log a run’s progress
while periodically evaluating the agent using Tensorboard (Abadi et al., 2015). Figure A.3
illustrates the setup of a single training run. The dashed boxes show the methods that
are overridden by our custom functions. Furthermore, the callback identifies methods in-
voked at every training step and the start and finish of a training run. It also accompanies
a subset of tasks that may be carried out.

A.7 Reproducibility of Results
The previous section highlighted the importance of carrying out multiple runs for a single
experiment and averaging them. Quantitative results are significant in RL (Raffin et al.,
2021), and a fair comparison requires their execution under identical conditions. With
this in mind, the experiments in this project may be seeded completely randomly or based
on a known seed. The latter was adopted throughout the thesis, with a value of 99.

It becomes complicated when forking multiple processes and parallelising runs be-
cause the operating system has an element of stochasticity. For this reason, the seed
values are generated in themain process before forking multiples run. They are passed in-
dividually to each run to be used as a seed in its pseudo-random number generators. Vec-
torised environments are seeded based on the pseudo-random number generator within
the run. Runs and their vectorised environments are initialised for a single experiment
with unique seed values. However, these sets of seed values are standard across exper-
iments allowing, as mentioned earlier, a fair comparison. Evaluation for all experiments,
including their runs, is based on a different non-vectorised environment always seeded
with the same values. In other words, the evaluation environment is constant.

It should be noted that neural architecture search (Section 4.2.7.2) is parallelisedwithin
the Optuna (Akiba et al., 2019) framework. Optuna uses random seeds for individual par-
allel runs and suggests a sequential operation when deterministic results are desired. An
exception is made here in the interest of time since parallelisation reduces the run time
sixfold from as much as twelve days to as little as two days.

144

B Datasets

This section provides supplementary information about the datasets used in this thesis
which may be particularly helpful for replicating parts of this work. The pool of circuits
from which all datasets are derived is described in Table B.1.

ID Layout Name Central Component Layout Type # Components Dimensions (mm)
01 555_timer NE555 Mixed-Signal 5 20x2002 audio_preamp TL072 Analogue 13 20x2003 audio_rx CS5343 Mixed-Signal 15 20x2004 audio_tx CS4344 Mixed-Signal 15 20x2005 butterworth_lpf TL071 Analogue 4 20x2006 differential_amplifier TL074 Analogue 7 20x2007 diff_gyro_afe TL074 Analogue 13 20x2008 ftdi FT4232HQ Analogue 21 30x3009 iic_gpio_expander PCA9500PW Digital 11 20x2010 lan8720 LAN8720 Mixed-Signal 16 30x3011 led0 BC847 Analogue 2 20x2012 led1 BC847 Analogue 4 20x2013 max9744 MAX9744 Mixed-Signal 28 30x3014 mcp73871 MCP73871 Mixed-Signal 11 20x2014 neo_m9n NEO_M9N Mixed-Signal 8 30x3016 notch_filter TL071 Analogue 6 20x2017 notch_filter2 TL072 Analogue 8 20x2018 PModBoard MPU6050 Digital 4 20x2019 spi_flash W25Q32 Digital 6 20x2020 tc_logger_max232 MAX3232 Analogue 4 20x2021 tc_logger_max31856 MAX31856 Mixed-Signal 7 20x2022 tc_logger_mcu P18F26Q10 Digital 3 20x2023 tc_logger_silabs CP2102 Digital 7 20x2024 usb_controller MAX3421 Mixed-Signal 7 20x2025 usb_host_cli USB3300 Mixed-Signal 8 20x2026 voltage_datalogger_adc0 MCP3564 Mixed-Signal 8 20x2027 voltage_datalogger_adc1 MCP3564 Mixed-Signal 16 30x3028 voltage_datalogger_adc2 TL071 Analogue 2 20x2029 voltage_datalogger_afe TL074 Analogue 8 20x2030 w5500 W5500 Mixed-Signal 18 30x30

Table B.1: Enumeration of all circuits in the dataset.
145

APPENDIX B. DATASETS

Field Type Description

Nodes Ordered list List of node attributes ordered by component id.Constituents as described in TableEdges List Adjacency listEdge Attributes List Edge attributesBoard size (x) Double Board horizontal dimension (mm)Board size (y) Double Board vertical dimension (mm)Completion Double Layout completion as a fraction of the parent layoutLayout ID Integer Derived from, but tracable to the parentLayout Name String Identical to the parent
Iterations Integer Number of placement optimisations withHoltz et al. (2020) simulated annealingOverlap Double Overlap area between componentsHPWL Double Approximate wirelengthRUDY wirelength Double Approximate wirelength based onRouted wirelength Double Routed wirelength (optional)
Routed vias Integer Number of vias introduced by Lin et al. (2020)A* star router (optional)

Table B.2: Enumeration of attributes associated with a circuit netlist.
B.1 Constructive Placement Dataset
This section contains supplementary information about the dataset generation described
in Section 4.1.4.2 as part of the wirelength prediction task. Table B.2 describes all the
Parameter Value Description
Random captures 4096 Number of partial layout to generateOptimisations 2 Optimise each partial layout twice
Optimisation multiplier 2 Number of layout components multiplied bythis value provides the upper bound forsimulated annealing iterations.
Minimum iterations 8 Absolute lower bound on simulated annealingiterations
Maximum iterations 2048 Absolute upper bound on simulated annealingiterationsRoute True Routed wirelength targets are generated
Rip up and reroute iterations 5 Rip up congested regions and reroute to improvewirelengthLayer change cost 100 Cost associated with the introduction of a viaUnique base layouts 20 Further details available in Table

Table B.3: Configuration for automatic dataset generation. The subse-quent dataset was employed in graph-level wirelength prediction task.
146

APPENDIX B. DATASETS

Train / Test Dataset Unseen DatasetLayout name # Layouts % Layouts # Layouts % Layouts
555_timer 758 9.25% 0 0%led_1 220 2.69% 0 0%differential_amplifier 308 3.76% 0 0%voltage_datalogger_afe 344 4.2% 0 0%iic_gpio_expander 498 6.08% 0 0%usb_controller 0 0% 134 26.17tc_logger_mcu 136 1.66% 0 0%tc_logger_silabs 0 0% 156 30.47PModBoard 0 0% 94 18.36notch_filter 268 3.27% 0 0%tc_logger_max232 192 2.34% 0 0%butterworth_lpf 164 2.0% 0 0%spi_flash 272 3.32% 0 0%tc_logger_max31856 308 3.76% 0 0%usb_host_cli 362 4.42% 0 0%voltage_datalogger_adc0 394 4.81% 0 0%notch_filter2 0 0% 128 25audio_preamp 520 6.35% 0 0%audio_rx_s 626 7.64% 0 0%audio_rx_m 606 7.4% 0 0%audio_tx_s 610 7.45% 0 0%audio_tx_m 564 6.88% 0 0%diff_gyro_afe 550 6.71% 0 0%mcp73871 492 6.01% 0 0%Total 8192 100% 512 100%
Table B.4: Detailed dataset constituents used for wirelength prediction.

elements associated with each graph data point in the dataset, while Table B.3 contains
the configuration used for randomly generating it. Furthermore, Table B.4 accumulates
the number of individual circuits used in the training and testing dataset comprised of
8192 random circuits and the unseen dataset comprised of 512 random circuits. The
percentage contribution is also listed and indicates that larger circuits were sampled more
often than smaller ones.

B.2 Single-Component Iterative Placement Dataset
The single-component dataset was derived from a single circuit. Concerning Table B.1,
the layout name is 555_timer. Dataset D1 comprises three circuits depicted in Figure B.1

147

APPENDIX B. DATASETS

(a) D1a (b) D1b (c) D1c

Figure B.1: Constituents of the single-component dataset, D1 used forstudying policy learning on individual circuits. The component enclosedwithin a red bounding box is movable and will be controlled by the policy.

(a) D2a (b) D2b (c) D2c

(d) D2d (e) D2e

Figure B.2: Constituents of the multi-component dataset, D2 used forstudying generalisation. The component enclosed within a red boundingbox is movable and will be controlled by the policy.
148

APPENDIX B. DATASETS

used in distinct training runs. Dataset D2 illustrated in Figure B.2 contains five circuits
simultaneously used in a single training run. The red boxes highlight the single move-
able component, and the remaining circuits were locked in KiCad (Bautista et al., 2022).
Section 4.2.6 describes the usage of these datasets in further detail.

B.3 Multi-Component Iterative Placement Dataset
The multi-component dataset was introduced in Section 4.3.4. Here were provide sup-
plementary information about its constituents. Table B.5 presents all the nine circuits in
the dataset selected from Table B.1. Six circuits comprise the training dataset MTx whilethe remaining make up the testing dataset denoted by MUx. The latter was exclusively
used for evaluation purposes to assess the generalisation capabilities of our approach.
Layout name Handle Training / Unseen # Components Mixed size
555_timer MT0 Training 5 YPModBoard MT1 Training 4 Ntc_logger_max232 MT2 Training 4 Ntc_logger_max31856 MT3 Training 7 Ytc_logger_mcu MT4 Training 3 Ntc_logger_silabs MT5 Training 7 Yvoltage_datalogger_adc0 MU0 Testing 8 Yvoltage_datalogger_adc2 MU1 Testing 2 Nvoltage_datalogger_afe MU2 Testing 8 N

Table B.5: Multi-component dataset employed fro training and testing.

149

C Supplementary Experiments

This section contains supplementary experiments performed to develop an understand-
ing of particular aspects of our setup. Many of these tests were performed to replace
assumptions with data-driven decisions. Specifically, they contain pre-preliminary test
setups used to validate our environments, additional analysis of optimisation runs and
quantitative experiments that draw relationships between parameters of interest.

(a) Example using a discrete action space (b) Example using a continuous action space
Figure C.1: Illustration of expected policy behaviour with discrete and con-tinuous action spaces.

150

APPENDIX C. SUPPLEMENTARY EXPERIMENTS

C.1 Expectations fromSingle-Component IterativePlace-
ment

Our RL agent is provided with three pieces of information, a description of its surround-
ings, a general direction pointing towards the target region, and its position and attitude.
These represent the observation derived fromproblem features. The policy learns to carry
out actions that guide the agent through obstacles and ultimately place the component in
the circuit. Figure C.1(a) and C.1(b) respectively illustrate the trajectory taken by a trained
agent using a discrete and continuous action space.

C.2 Single-ComponentPlacementwithDiscreteActions
Supplementary experiments investigating the effects of particular environment parame-
ters, such as episode length and step size, are presented in this section. We also study
the impact of random initialisation on training performance because the discrete nature
of the action space requires varying steps for travelling a certain distance depending on
the target angle. Lastly, we reveal additional detail on the results of the combined hyper-
parameter and NAS.

C.2.1 Quantitative Analysis of Episode and Step Length
A discrete action space limits movement to defined step lengths, resulting in a positional
error based on initial conditions and the step length, which can reach a maximum error
equivalent to the step length. This can affect training performance: choosing a small step
size reduces positional error but prolongs episodes with greater variation, while selecting
a large step size results in shorter episodes but potentially larger positional errors.

The length of an episode may also affect the performance of the training process, as
a trained agent is expected to complete a fixed number of steps on average within a pre-
determined layout size. If the agent spends most of its episode time near the optimal
location, the collected data points will be very similar and will not be very useful for train-
ing. Some deviation in the intermediate steps required to reach the optimal location will
be present due to random initial conditions. Consequently, the episode length can impact
both the duration and quality of the learned policy, and thus it is worth investigating.

We attempt to co-optimise the episode and step length by varying the episode length
from 50 to 300 steps in increments of 50 for three different step lengths. The experi-
mental setup is summarised in Table C.1. Since we anticipate the agent’s reward to level

151

APPENDIX C. SUPPLEMENTARY EXPERIMENTS

off once it approaches the optimal location, we fit a logarithmic function to the collected
data and select the best parameters.
C.2.1.1 Experimental Results

(a) step length = 0.3mm (b) step length = 0.5mm

(c) step length = 0.7mm
Figure C.2: Relationship between return-per-step and episode length usinga discrete action space for three step length values.

Figure C.2 illustrates the results for sweeping the episode length for three step sizes
ranging from 0.3 to 0.7mm. Since we expected a logarithmic relationship, we fit a log-
Parameter Value Step Description
episode steps 50 - 300 50 The maximum number of steps allowed in the environ-mentstep length 0.3 - 0.7 0.2 The discrete step length in mm

Table C.1: Configurations for episode and step length experiments.
152

APPENDIX C. SUPPLEMENTARY EXPERIMENTS

arithmic function to our data points and extracted a log function with an R2 coefficient
exceeding 0.96 in all cases. A high R2 coefficient indicates that our data highly correlates
with the interpolated logarithmic function.

The trade-off imposed by the step size is one of accuracy against movement distance
and is evident between the two extremes depicted in FiguresC.2(a) and C.2(c). The for-
mer requires significantly more steps for the average return per step to stabilise, while
the opposite is observed in the latter. The average return per step is expected to be
higher for smaller step sizes indicating that more accurate positioning is possible. The
final positional error arising from the quantised action can contribute a significant error
and is exacerbated by the non-linear nature of the tangent function since it asymptotically
reaches infinity as its dependent variable approaches π

2 . Therefore minor errors close to
π
2 can have a severe impact on the average return.

The impact of the episode length is less significant, and setting it to a small one may
result in the policy not converging, while setting it high will result in unnecessarily long
training runs. The latter may also impact performance by overwhelming the replay buffer
with highly correlated data in which the agent remains relatively still. The in-between step
size of 0.5 achieves balance when coupled with an episode length between 150 and 250
steps. We adopted an episode length of 200 in our tests; however, additional experiments
with an episode length of 100 converged consistently.
C.2.1.2 Effect of Initialisation
Random initial conditions may affect the training performance due to requiring a vary-
ing number of steps to the target. This is exacerbated for discrete action spaces by the
fact that the agent can only move at an angle that is an integer multiple of 90 degrees.
Figure C.3 depicts the difference in movement between a discrete and continuous action
space. For the former, the component must first move along the opposite side, followed
by the adjacent side, and the latter has to move along the hypotenuse. By analogy, when
the component is initialised at the worst-case angle of 45 degrees relative to the optimal
location, a discrete action space requires 41.42%more steps to reach the goal. We inves-
tigate this variability’s impact on training performance by fixing the initialisation condition
to a handful of starting locations. The distance to the optimal goal region is fixed at 6mm
at an angle of 30 degrees. Since the data augmentation module is retained, there will still
be variations at every episode step, preventing this from being a trivial experiment.

153

APPENDIX C. SUPPLEMENTARY EXPERIMENTS

C.2.1.3 Experimental Results
Throughout the training process, two features introduce variety across episodes such
that the policy may learn the fundamentals and generalise to differing setups. These
are the data augmentation module discussed in Section 4.2.6.2 and random component
initialisation. In this experiment, we fix the initialisation at a fixed distance and angle to the
goal distance while retaining the data augmentation feature. Doing so sets the number
of steps the agent requires to reach the goal throughout the episode.

The impact of this setup condition resulted in reduced standard deviation throughout
the training process, as is evident from Figure C.4 and numerically in Table C.2. For fixed
initialisation, the average tends to suffer slightly, ranging from 0.38% for TRPO using
reward R2a to 3.27% for TRPO guided by reward R2b. The exception is PPO trained with
rewards signal R2b, in which a 0.267% improvement is registered. The standard deviation,
on average, drops by 60%. Another noteworthy observation is that fixed initialisation
leads to slightly faster training, which is implied by the steeper learning average return
curve. This may be attributed to less variation experienced throughout training and a
more straightforward, albeit not necessarily better, path to success.

Figure C.3: Illustration of random initialisation influencing the learning pro-cess. The number of discrete steps for a fixed target distance is conditionalon the target angle θ.

154

APPENDIX C. SUPPLEMENTARY EXPERIMENTS

reward signal R2a reward signal R2b
Random initialisation Fixed initialisation Random initialisation Fixed initialisation

TRPO 1300.57 ± 380.16 1295.33 ± 155.66 1484.20 ± 382.19 1437.66 ± 142.93PPO 1455.22 ± 358.31 1438.76 ± 135.07 1494.93 ± 419.06 1498.24 ± 180.51
Table C.2: Average return contrasting the impact of fixed and random ini-tialisation on learning performance. A discrete action space and reward
R2x were considered.

C.2.1.4 Neural Architecture Search
The slice plot in Figures C.5(c) and C.6(c) illustrate how individual parameters affect the
objective value. As multiple trials are performed, parameter sets can be identified. For
example, concerning TRPO, a tanh activation function, combined with a policy network
of 2-3 layers and a value network of arbitrary size, will likely be a good selection. Con-
cerning PPO, the number of policy layers is deemed highly important according to Figure
C.6(b), likely due to the inability to surpass a return value of 1300 when employing a sin-
gle layer as indicated in the slice plot in Figure C.6(c). Similar to TRPO, PPO is insensitive
to the number of value layers and the activation function. The optimisation histories for
TRPO in Figure C.5(a) and PPO in Figure C.6(a) show that the best architecture yields a
return that deviates from the rest. A scenario that is more severe in TRPO and may be
attributed to the optimisation process’ dependence on the random seed. The implica-
tions of random initialisation and reproducibility of results were discussed in Appendix

(a) Reward signal R2a (b) Reward signal R2b
Figure C.4: Average return for training with fixed and random initialisationwith a discrete action space and reward signal R2x. Random initialisationintroduced a notable increase in standard deviation.

155

APPENDIX C. SUPPLEMENTARY EXPERIMENTS

(a) Optimisation history (b) Hyperparameter importance

(c) Slice chart correlating activation function and network depth with objective cost
Figure C.5: NAS results for TRPO with a discrete action space and R2x

A.7. Since, for practical reasons, parallelisation was necessary, one way to reduce the risk
of an outlier impacting the results is to average the trial return over multiple runs. Such
an approach would incur a computational penalty albeit still result in higher throughput
than a sequential approach while attenuating the impact of a lucky run.

156

(a) Optimisation history (b) Hyperparameter importance

(c) Slice chart correlating activation function and network depth with objective cost
Figure C.6: NAS results for PPO with a discrete action space and R2x

APPENDIX C. SUPPLEMENTARY EXPERIMENTS

C.3 Single-Component Placement with Continuous Ac-
tions

This section presents further experiments related to the single-component setup with
continuous action spaces. In particular, we present preliminary experiments illustrating
the limitations of policy optimisation (TRPO and PPO) and the success of actor-critic (TD3
and SAC) algorithms on this setup. We also sweep a range of episode lengths to identify
a practical value that achieves a good trade-off in terms of average return per step.
C.3.1 Preliminary Experiments
Continuous action spaces tend to require more training effort when compared to policies
with discrete action spaces. A control experiment was performed to establish a baseline
prior to carrying out extensive experiment runs. Using the Stable Baslines3 (Raffin et al.,
2021) default setup, we found that on-policy algorithms fail to learn a policy for placing
a single moveable component in a fixed circuit. By contrast, off-policy algorithms per-
formed exceptionally well. Figure C.7 illustrates the average return for all four algorithms
under consideration as a function of absolute steps carried out in the environment and
are further summarised numerically in Table C.3.

(a) Training guided by reward signal R2a (b) Training guided by reward signal R2b
Figure C.7: Average return for the considered RL algorithms on continuousaction spaces. TD3 and SAC actor-critic algorithms are successful on thetask, in contrast with on-policy TRPO and PPO.

According to Figure C.7 the TRPO and PPO are initially assigned large negative re-
wards that gradually decrease and settle around zero. This behaviour is motivated by the
avoidance of the early termination penalty. During the initial episode, the policy often

158

APPENDIX C. SUPPLEMENTARY EXPERIMENTS

Reward R2a Reward R2b
TRPO 13.38 ± 189.70 -9.13 ± 249.18PPO -3.60 ± 114.74 8.32 ± 54.11TD3 1594.00 ± 515.31 1516.60 ± 447.67SAC 1615.82 ± 503.37 1734.97 ± 392.44

Table C.3: Average return for optimised experiment configurations with acontinuous action space.
drives the component into the padding and outside the board region. When such a sit-
uation happens, the episode terminates early, and the agent is penalised proportionally
to the remaining steps. Therefore by remaining stationary, the agent avoids the penalty
altogether, leading to a relatively higher return, albeit useless. On-policy algorithms col-
lect small batches of data points through trial-and-error interactionwith the environment,
which they use and discard. If an exemplary sequence of actions is hard to find, the agent
may not be able to generate sufficient data points of high quality to learn. Therefore, the
policy may not learn due to its inability to collect high-quality data as a result of being
stupid, which is a catch-22 situation. On-policy algorithms were successful with a dis-
crete action space containing a set of six possibilities, but with a continuous action space,
the possibilities are infinite and thus more challenging. Off-policy algorithms are less sus-
ceptible to this phenomenon because they store data points in a replay buffer which can
be reused over an extended time.

C.3.2 Quantitative Analysis of Episode Length
The experiment is identical to that described in Appendix C.2.1 albeit concerning TD3
and SAC. Episode length is swept from 25 to 300 steps in increments of 25 steps, while
the step length scaler is retained constant at 1mm value.
C.3.2.1 Experimental Results
The episode length impacts both training time and inference performance. Here we seek
to identify the optimal episode length to simultaneously satisfy both these criteria. Figure
C.8 illustrates the plot of mean return per step as a function of episode length for con-
tinuous action policies trained with TD3 and SAC. A logarithmic curve is fit to the data
points yielding an R2 coefficient of 0.84 for TD3 and 0.87 for SAC. The result affirms our
expectation that such a logarithmic relation exists for our environment. Based on this ex-
periment, we concluded that an episode length between 150 and 250 would be optimal

159

APPENDIX C. SUPPLEMENTARY EXPERIMENTS

Figure C.8: Relationship between return-per-step and episode length fora continuous action space.
and settled in the middle at 200 steps.

C.4 Multi-Component Iterative Placement
We investigate two important aspects of the multi-component setup. First, we study the
impact expert knowledge has on training performance. Second, we look at the effect of
the replay buffer on training performance where we consider buffers of fixed size but also
resizable ones with a variety of resizing strategies.

C.4.1 Impact of Expert Knowledge on Learning Performance
Equation 4.10 describes the normalised reward signal relative to the initial conditions and
best-known historical value for EW and HPWL, otherwise referred to as expert knowl-
edge. This section looks at the impact prior expert knowledge has on both training and
performance. Two experimental setups are configured that on the onset of training, re-
spectively start with no expert knowledge and with expert knowledge identified by prior
agents. In the case of the former, the agents have to identify the best wirelength values
as part of the exploration process. In contrast, the latter requires practically no change to
the expert parameters because they are likely very close to the optimal values already.

160

APPENDIX C. SUPPLEMENTARY EXPERIMENTS

Configuration Expert TD3 TD3 (Pruned) SAC % SAC
EW=6, HPWL=2, Overlap=2 N 546.37 ± 302.58 745.13 ± 329.44 748.95 ± 259.48 0.51%EW=2, HPWL=6, Overlap=2 N 706.36 ± 356.60 706.36 ± 356.60 773.48 ± 264.67 9.50%EW=2, HPWL=2, Overlap=6 N 623.77 ± 274.08 623.77 ± 274.08 672.39 ± 194.23 7.79%EW=4, HPWL=4, Overlap=2 N 670.13 ± 322.51 670.13 ± 322.51 769.29 ± 247.17 14.80%EW=6, HPWL=2, Overlap=2 Y 503.08 ± 342.50 718.01 ± 344.83 759.07 ± 239.56 5.72%EW=2, HPWL=6, Overlap=2 Y 724.78 ± 306.57 724.78 ± 306.57 769.66 ± 241.95 6.19%EW=2, HPWL=2, Overlap=6 Y 645.23 ± 256.83 645.23 ± 256.83 692.76 ± 192.30 7.37%EW=4, HPWL=4, Overlap=2 Y 312.74 ± 296.15 722.33 ± 319.39 742.07 ± 225.10 2.73%

Table C.4: Average return for experiments studying the impact of expertknowledge on learning performance.
C.4.1.1 Experimental Results
Figure C.9 presents return charts for the experiment detailed previously. Recall thatmulti-
agent experiments are averaged over four runs, and Sub Figures C.9(a) to C.9(d) illustrate
this aggregation. Occasionally, TD3 fails to learn a policy. The return plots manifest with
a substantially lower average accompanied by a significant standard deviation as demon-
strated by Sub Figures C.9(a) and C.9(d). Sub Figures C.9(e) to C.9(h) prune the failed runs
and compute the average based on the available runs. Table C.4 summarises the exper-
imental results, with the percentage difference computed between SAC and TD3 with
the failed runs removed. SAC outperforms TD3 on all runs and on average by 8.15% and
5.5% with and without expert knowledge respectively. Additionally, SAC is more stable
throughout training, evidenced by two factors: exhibits a lower standard deviation across
runs, and we did not witness a single scenario where SAC failed to learn a policy.

Table C.5 shows the return differencewhen using known values for expert parameters.
On average, TD3 leads to a slightly increased return of 2.52% while SAC demonstrates
negligible improvement. Furthermore, when expert data was used, (3 / (4*4) = 18.75%)
TD3 runs failed to learn a policy, in contrast with (1 / (4*4) = 6.25%) when leaving it up to
the agent, to identify the expert values. Starting with known best historical parameters
may create a more challenging situation where the agent needs to maximize the reward.

Configuration % Expert TD3 % Expert SAC
EW=6, HPWL=2, Overlap=2 -3.78% 1.35%EW=2, HPWL=6, Overlap=2 2.61% -0.50%EW=2, HPWL=2, Overlap=6 3.44% 3.03%EW=4, HPWL=4, Overlap=2 7.79% -3.67%Mean 2.52% 0.05%

Table C.5: Difference in average return due to expert knowledge.
161

APPENDIXC.SUPPLEMENTARYEXPERIMENTS

(a) (EW=6 HPWL=2, O=2) (b) (EW=2 HPWL=6, O=2) (c) (EW=2 HPWL=2, O=6) (d) (EW=4 HPWL=4, O=2)

(e) (EW=6 HPWL=2, O=2) (f) (EW=2 HPWL=6, O=2) (g) (EW=2 HPWL=2, O=6) (h) (EW=4 HPWL=4, O=2)
Figure C.9: Average return illustrating the impact of expert knowledge on the training process. Each result is aggregatedover a maximum of four runs when applying pruning. The top four Figures aggregate all four training runs while the lowerfour prune the ones that did not manage to learn a policy.

162

APPENDIX C. SUPPLEMENTARY EXPERIMENTS

C.4.2 Impact of Replay Buffer on Adaptive Reward Learning
The replay buffer plays a crucial role in the multi-agent setup. As mentioned in the pre-
vious section, the agent will likely find better values for the expert parameters as part of
the trial-and-error search process. Furthermore, we rarely expect it to be the case where
the agent has access to the best values at the onset of training. For this reason, the data
in the replay buffer will be relatively inconsistent as the agent’s policy becomes better
and identifies improved expert parameters. Table C.6 summarises the experimental setup
that tests the impact of the replay buffer on learning capacity. First, we investigate a fixed
replay buffer of various sizes. Secondly, we test a variable-size replay buffer subject to a
resizing strategy. The resizing strategy updates the size of the replay buffer after carrying
out several steps equal to the latest buffer size. The overarching idea is that initially, the
policy is terrible and expert parameters are poor. Therefore we want to discard irrelevant
data points as quickly as possible. In later stages, when the policy matures and expert
values are close to their optimal for a given layout, the replay buffer is large and can thus
sample mixed batches of consistent data points.
Replay buffer size Variable Resizing strategy
3e5 No -6e5 No -1.2e6 No -1.8e6 No -3e6 No -25e3 Yes Double every <replay buffer size>steps25e3 Yes Tripe every <replay buffer size>steps25e3 Yes Quadruple every <replay buffer size>steps

Table C.6: Fixed and variable-size replay buffer configurations for investi-gating the impact of an adaptive reward signal on learning performance.

C.4.2.1 Experimental Results
Figure C.10 illustrates the raw return plots for the configurations presented in Table C.6,
aggregated over four runs. Figure C.11 illustrates the same results after pruning the failed
runs. Concerning SAC, the average return and associated standard deviation are inversely
and directly proportional to the buffer size. This relationship, while seemingly present, is
not as clear for TD3 due to policies that fail to learn. For instance, the setup with a buffer
size of 2400k has a 50% success rate and, compared to other fixed configurations, is an
outlier. However, according to Table B.5 the average number of components per layout

163

APPENDIX C. SUPPLEMENTARY EXPERIMENTS

in the training set is five, which means that after 600k steps, the number of data points
will be roughly 3000k. Therefore for large replay buffers, the degradation in performance
is likely to be caused by sample inconsistencies due to the adaptive reward signal.

A variable replay buffer was outperformed in all scenarios with both average return
and standard deviation metrics. Both SAC and TD3 favoured a small replay buffer of
1200k or less. Under this condition, SAC attained the best return with 1200k, which was
also the better choice for TD3 due to a comparable return and a standard deviation that
is 4.1% lower than average. In conclusion, we expect better results for the multi-agent
PCB placer if the variable replay buffer is replaced with one having a fixed size of 1200k.

Strategy TD3 TD3 (Pruned) SAC % SAC
Fixed 300k 741.9 ± 351.83 741.9 ± 351.83 797.05 ± 312.65 7.43%Fixed 600k 750.30 ± 345.75 750.30 ± 345.75 760.72 ± 267.88 1.39%Fixed 1200k 544.19 ± 292.91 744.94 ± 311.21 788.27 ± 267.30 5.82%Fixed 2400k 296.96 ± 346.73 690.96 ± 349.07 714.09 ± 246.71 3.35%Fixed 4800k 500.81 ± 251.01 685.28 ± 262.10 641.19 ± 231.45 -6.88%Variable Double 717.13 ± 368.46 717.13 ± 368.46 749.97 ± 283.57 4.58%Variable Triple 510.17 ± 318.28 699.09 ± 339.15 723.89 ± 291.74 3.55%Variable Quadruple 707.59 ± 328.73 707.59 ± 328.73 750.28 ± 288.99 6.03%

Table C.7: Average return for replay buffer experiments investigating theimpact of an adaptive reward signal on learning performance.

164

APPENDIXC.SUPPLEMENTARYEXPERIMENTS

(a) Fixed - 300k (b) Fixed - 600k (c) Fixed - 1200k (d) Fixed - 2400k

(e) Fixed - 4800k (f) Variable - double (g) Variable - triple (h) Variable - quadruple
Figure C.10: Average return illustrating the impact of the replay buffer size and resizing strategy on the learning process.Each result is aggregated over four runs regardless of learning success. Starting at the top left, the first five charts usea fixed-size replay buffer and the remaining three start with a buffer size of 25k and employ a resizing strategy. Rewardsignal configuration used is (EW=2 HPWL=6, Overlap=2).

165

APPENDIXC.SUPPLEMENTARYEXPERIMENTS

(a) Fixed - 300k (b) Fixed - 600k (c) Fixed - 1200k (d) Fixed - 2400k

(e) Fixed - 4800k (f) Variable - double (g) Variable - triple (h) Variable - quadruple
Figure C.11: Average return illustrating the impact of the replay buffer size and resizing strategy on the learning process(pruned). Each result is aggregated over a maximum of four runs after pruning unsuccessful learning trials. Starting atthe top left, the first five charts use a fixed-size replay buffer and the remaining three start with a buffer size of 25k andemploy a resizing strategy. Reward signal configuration used is (EW=2 HPWL=6, Overlap=2).

166

D Additional Background

D.1 Artificial Neural Networks
Artificial Neural Networks (ANNs) are parameterisable functions capable of approximat-
ing any mathematical relationship of an arbitrary number of variables. They are distin-
guished from other techniques by the learning process that optimises the parameters
with respect to an error signal. This section presents the perceptron model, multi-layer
perceptrons and standard training methods.

D.1.1 Perceptron Model
Rosenblatt (1958) proposed the perceptron model depicted in Figure D.1, that comprises
a set of weights and a bias analogous to the synapses in the mammalian brain. These
are followed by a summation operation and activation function analogous to the neuron’s
nucleus. In Rosenblatt’s model, a binary activation function was used. In a forward pass,
the sum of the input data multiplied by the weights together with the bias is computed.
If the sum is greater or equal to zero, the neuron will output the binary value of ’1’ and is
said to fire; otherwise will output 0.

σ(z) =

1 i f
n−1

∑
n=0

xiwi + b ≥ 0

0 otherwise
(D.1a)

σ(z) =

1 i f WTX + b ≥ 0

0 otherwise
(D.1b)

EquationsD.1a andD.1bmathematically describe this operation in an interativemultipy-
accumulate and vector forms respectively. xi and X represent the input data individually
and in vector form respectively, wi and W are the weights represented separately, and in

167

APPENDIX D. ADDITIONAL BACKGROUND

Figure D.1: Rosenblatt’s perceptron model (Rosenblatt, 1958).
vector format, and b is the bias term. σ(z) is the result of the multiply-accumulate opera-
tion between the inputs and the weights together with the bias, which is then clamped to
either 0 or 1 by the activation function, yielding the boolean result y. Rosenblatt’s neu-
ron model is the fundamental building block of AI systems, with a minor difference. In
the mainstream case where gradient-based learning is employed, the discontinuous step
activation is replaced with a differential one such as sigmoid or tanh.

D.1.2 Multi-Layer Perceptrons
AMLP constitutes a subset of neural networks. It comprises layers of perceptrons, having
an input layer, an output layer and an optional amount of hidden layers. The shape of the
input data or problem features restricts the size of the input layer, while the task being
carried out defines the size of the output layer. Figure D.2 depicts the architecture of a
multi-layer perceptronwith one hidden layer for a total of three layers. In a typical forward
pass, the input vector is multiplied by the weights of the first layer, and each will sum its
inputs with the bias and propagate it through the activation function. The result is input
to the next layer and repeated until the output layer is reached.

MLPs are universal function approximators that could approximate any continuous
function (Hanin, 2019; Hornik et al., 1989). The quality of the estimated function is sub-
ject to the layer width in neurons of the hidden layer. Practically, neural networks with a
wide single hidden layer are not very common. Instead, multi-layer deep neural networks
are used because they are easier to optimise. The configuration of the hidden neuron has
been extensively studied in terms of width and depth Lu et al. (2017).

168

APPENDIX D. ADDITIONAL BACKGROUND

Figure D.2: Architecture of a Multi Layer Perceptron (MLP).

hl
j = ϕ(∑

i
xiwl

ij + bl
j) ∀i, j, l ≥ 0

= ϕ(WT
j X + bl

j) ∀i, j, l ≥ 0
(D.2a)

Hl = ϕ(WTXl + Bl) ∀l ≥ 0 (D.2b)
Equations D.2a and D.2b mathematically capture the propogation of an input through

a single layer. hl
j is the output of the jth neuron in the lth layer and Hl is the output of all

neurons in the lth layer represented in vector format. ϕ is the activation function adopted
by each neuron applied to the multiply-accumulate operation between inputs xi or X,
weights wi or W, together with the bias bi or B.

D.1.3 Neural Network Training
Multi-layer perceptrons are trained through an optimisation process driven by a cost func-
tion that captures themodel’s error. The cost function collapses the complexity of a neural
network down to a single scalar value that may be used to rank and compare solutions.
For a fixed topology MLP, the training process adjusts the weights and biases to minimise
a loss function. Cross entropy and mean squares error are loss functions that compute
the error between the neural network’s prediction and a target value. Cross entropy log
loss measures the performance of a model whose output is a probability distribution and

169

APPENDIX D. ADDITIONAL BACKGROUND

is generally used on classification problems. In contrast, Mean Square Error (MSE) loss is
used on regression tasks.

Two widespread methods exist for training neural networks, gradient-based learning
and black-box optimisation. The backpropagation algorithm (Rumelhart et al., 1986) is
frequently used to compute the error gradient with respect to the network’s parameters.
This approach is effective because by following the gradient, it is guaranteed to find a
minimum within the search space. The challenge arises when the search space is non-
convex and has many local minima and a single global optimum because the algorithm can
converge sub-optimally. Momentum and adaptive learning rate (Kingma and Ba, 2014) are
techniques used to move out of local minima in search of better convergence points.

On the other of the spectrum are black-box optimisationmethods, which use heuristic
algorithms to optimise the parameters of the neural network. Population-based heuristics
such as evolutionary algorithms can explore the search space more effectively because
multiple solution points are scattered all over the search space. Due to their highly parallel
approach, these approaches consume a notable amount of computational power.

D.2 Graph Theory
Figure D.3 illustrates an undirected graph of six nodes and six edges. Of particular interest
is edge five, which originates and terminates at the same node and is called a self-loop.

The order of a graph is equal to the number of nodes, and the size is equal to the num-
ber of edges. The degree of a vertex is equal to the number of edges linking to adjacent
vertices. An isolated vertex is a particular case that has no adjacent nodes. Concerning
Figure D.3(a), the order is six, and the degree of vertices C and F, respectively, are three
and one. G is an isolated vertex. Graphs can be classified further and the following list
presents some elementary properties.

1. A null graph contains a non-empty set of vertices and an empty set of edges.
2. A regular graph comprises a set of nodes with the same degree. A k-regular graph

has all its constituent nodes of degree k.
3. A complete graph has every node connected to every other node in the graph’s

vertices. An n − 1-regular graph of order n, where n is the number of nodes, is a
complete graph denoted as Kn.

4. The size of a fully connected graph having n nodes is equal to n(n−1)
2 .

170

APPENDIX D. ADDITIONAL BACKGROUND

5. A smaller graph derived from a larger graph is called a subgraph and contains a
subset of nodes and edges of the original graph. Figure D.3(b) illustrates a subgraph
derived from Figure D.3(a). Coincidentally it is also a complete graph.

(a) A Graph (b) Fully connected sub-graph
Figure D.3: Illustration of basic graph structures. On the left is an arbitrarygraph, and the one on the right is a derived, fully connected sub-graph.

D.2.1 Mathematical Representation
A graph may be represented using an adjacency list or an adjacency matrix. An adjacency
list contains a collection of unordered lists representing connections between graph ver-
tices. In the simple case, a single unordered list within the collection is a pair that repre-
sents a connection between two vertices. The adjacency list for the graph in Figure D.3(a)
is shown in Equation D.4b. For completeness, the set of nodes is also listed in Equation
D.4a. However, it is not limited to a pair and can encapsulate an arbitrary number of
vertices, resulting in a hyperedge.

A finite graph may also be represented with a square matrix of booleans, where a logic
one indicates the presence of an edge and a logic zero its absence. The adjacency matrix
corresponding to the graph in Figure D.3(a) is listed in Equation D.3.

171

APPENDIX D. ADDITIONAL BACKGROUND

Am =

A B C D E F



0 1 1 0 0 0 A
1 0 1 0 0 1 B
1 1 0 1 0 0 C
0 0 1 1 0 0 D
0 0 0 0 0 0 E
0 1 0 0 0 0 F

(D.3)
V = {A, B, C, D, E, F} (D.4a)

E = {{A, B}, {A, C}, {B, C},

{C, D}, {D, D}, {B, F}}
(D.4b)

D.3 Net Models
A net consists of an arbitrary number of pins, each having a position (xi, yi). A fundamen-
tal property of a net is that all pins must have the same electric potential. In other words,
they must be connected by the same wire. A net can be represented using a graph where
nodes represent pins and edges indicate connections between pins. A hyperedge may
also be used linking multiple nodes. A net model describes how to measure or estimate
the length of a net. This section presents some standard net models used to approximate
the length of a net. These are typically categorised based on differentiability.

The clique netmodel uses all two-pin connections of a net resulting in an amount equal
to the size of a regular graph. The minimum spanning tree utilises a minimal amount of
edges equal toN-1 and attempts to identify the shortest path that connects all constituent
pins. The downside is that its construction has a time complexity larger than O(N). A star
net model has a runtime complexity of O(N) and uses a virtual node at the centre of the
net creating N two-pin connections are between the pins and the virtual node.

A Steiner tree adds additional pins to create a path strictly composed of vertical and
horizontal two-pin connections. A minimal Steiner tree results in a set of edges that sum
up to a minimal net length. However, finding the optimal Steiner is an NP-hard problem,
albeit near-optimal approximations are available.

Half Perimeter Wire Length (HPWL) constructs a minimum bounding rectangle en-
closing all pins, making a net. As the name implies, the wirelength is approximated using
half the perimeter of the rectangle.

D.3.1 Differentiable Net Models
Differentiable net models mathematically approximate thewirelength of a net while being
able to compute its derivate analytically. Often this is required by analytic placers as a re-
placement for HPWL, which is not a differentiable net model. The quadratic length model

172

APPENDIX D. ADDITIONAL BACKGROUND

(a) Hypergraph (b) Clique (c) Minimum spanning tree

(d) Star (e) Steiner tree (f) HPWL
Figure D.4: Illustration of different wirelength models.

sums half the euclidean length of every two-pin connection in a net and is employed by
quadratic placers. Multi-pin nets are often modelled using a clique or star models to de-
compose into two-pin connections. Two common differentiable wirelength models often
used by nonlinear analytic placers are the lp-norm and LSE. Chan et al. (2005) compares
the performance of the two and conclude that, on average, the placers using LSE outper-
form those modelling wirelength with lp-norm.

The quadratic length model sums half the euclidean length of every two-pin connec-
tion in a net. Equation D.5 contains the quadratic wirelength cost of a netlist. Half the
quadratic length is considered to simplify the derivative. Multi-pin nets are often mod-
elled using a clique or star models to decompose into two-pin connections.

∑
e∈E

1
2

(
∑

vi ,vj∈e
wx,ij(xi − xj)

2 + ∑
vi ,vj∈e

wy,ij(yi − yj)
2

)
(D.5)

The LSE approximation and the Lp-norm are sometimes used to more accurately ap-
proximate smooth HPWL. Equation D.6a illustrates the LSE where γ is used to control
the accuracy of the approximation. As it approaches zero, the LSE cost approaches that
of HPWL as shown in Equation D.6b. Similarly, Equation D.7a shows lp-norm with the

173

APPENDIX D. ADDITIONAL BACKGROUND

difference that converges to the HPWL as p approaches infinity, also noted by Equation
D.7b. In both cases, finite numerical precision of IEEE754 floating point arithmetic has to
be considered to prevent arithmetic overflows during implementations. Chan et al. (2005)
compare the performance of the two and conclude that, on average, the LSE outperforms
the lp-norm.

LSEe = γ

(
log ∑

vk∈e
e

xk
γ + log ∑

vk∈e
e−

xk
γ + log ∑

vk∈e
e

yk
γ + log ∑

vk∈e
e−

yk
γ

)
(D.6a)

lim
γ→0

LSEe = HPWLe (D.6b)

Lpnorme =

(
∑

vk∈e
xp

k

) 1
p

−
(

∑
vk∈e

x−p
k

)− 1
p

+

(
∑

vk∈e
yp

k

) 1
p

−
(

∑
vk∈e

y−p
k

)− 1
p (D.7a)

lim
p→∞

Lpnorme = HPWLe (D.7b)

174

E Machine Information and Statistics

This section presents machine information and detailed experiment statistics. First, com-
prehensive details are presented on themachine being used, including hardware and soft-
ware specifications. Secondly, a detailed breakdown of the experiment run time for each
section of the thesis is provided to understand the experiment’s results better.

E.1 Machine Information
The experiments described in this thesis were performed on a Ubuntu 18.04 Linux ma-
chine whose details are tabulated in Table E.1.

Component Value
CPU Intel Core i7-10700K @ 3.8GHz 8C/16TMemory 64GBGPU Nvidia GeFore GTX 1080 8GBGPU Driver 470.141.03 CUDA 10.2Operating System Ubuntu #147 18.04.1Kernel Release 5.4.0-131

Table E.1: Machine specifications

E.2 Experiment Runtimes
Statistics relating to training time and the number of interaction steps carried out in this
thesis, excluding supplementary experiments, are summarised in this Section. Average
durations were derived from the runtimes logged in Tensorboard (Abadi et al., 2015). The
experimentswere parallelisedwith a factor of six to eight, andwhilewe report the running
time per experiment, the single-threaded performance is expected to be higher. Table E.2

175

APPENDIX E. MACHINE INFORMATION AND STATISTICS

summarises the experiment run time for the constructive placement methodology. Most
of the time is consumed by the hyperparameter and NAS.

Experiment Algorithm Configurations Runs /
Configuration

Time /
Run (hr) Epochs Training

Steps
Total Experiment

Time (hr)
Total Experiment
Steps (millions)

Wirelength PredictorNAS - GCN - 128 4 0.15 100 - 76.8 -
Wirelength PredictorNAS - GraphConv - 128 4 0.15 100 - 76.8 -
Wirelength PredictorNAS - GAT - 128 4 0.15 100 - 76.8 -
Constructive Placement TRPO 1 4 5 - 5E6 20 20Constructive Placement PPO 1 4 4 - 5E6 16 20

Table E.2: Constructive Placement Experiment statistics
Table E.3 summarises the run times of experiments conducted for the single-component

iterative placement methodology. Preliminary experiments with reward signal R1 took uplittle time. By contrast, significant computation time was expended on R2 and R3 study-
ing various parameters, including action spaces, hyperparameter optimisation and NAS,
reward signal variations and their impact on generalisation performance. These efforts
were compounded due to the consideration of two policy optimisation methods (TRPO
(Schulman et al., 2015), PPO (Schulman et al., 2017)) and two actor-critic methods (TD3
(Fujimoto et al., 2018), SAC (Haarnoja et al., 2018)).

Experiment Algorithm Configurations Runs /
Configuration

Time /
Run (hr)

Training
Steps

Total Experiment
Time (hr)

Total Experiment
Steps (millions)

Discrete R1 - Individual TRPO 4 6 1.5 1E6 24 36Discrete R1 - Individual PPO 4 6 1 1E6 24 24Discrete NAS TRPO 64 1 1.5 1E6 64 96Discrete NAS PPO 64 1 1 1E6 64 64Discrete R2 - Individual TRPO 12 6 1.5 1E6 72 108Discrete R2 - Multiple TRPO 4 6 3 2E6 48 72Discrete R2 - Individual PPO 12 6 1 1E6 72 72Discrete R2 - Multiple PPO 4 6 2 2E6 48 48Continuous NAS TRPO 64 2 1.5 1E6 128 128Continuous NAS PPO 64 2 1 1E6 128 128Continuous NAS TD3 64 2 3 1E6 128 384Continuous NAS SAC 64 2 2 1E6 128 256Continuous R2 - Individual TD3 16 6 3 1E6 96 288Continuous R2 - Multiple TD3 4 6 6 2E6 48 144Continuous R2 - Individual SAC 16 6 2 1E6 96 192Continuous R2 - Multiple SAC 4 6 4 2E6 48 96Continuous R3 - Replay Buffer TD3 6 6 3 1E6 36 108Continuous R3 - Replay Buffer SAC 6 6 2 1E6 36 72Continuous R3 - Individual TD3 6 6 3 1E6 36 108Continuous R3 - Multiple TD3 2 6 6 2E6 36 72Continuous R3 - Individual SAC 6 6 2 1E6 24 72Continuous R3 - Multiple SAC 2 6 4 2E6 24 48
Total 2616 1408

Table E.3: Single-Component Placement Experiment statistics
Table E.4 summarises the running time of experiments used in the multi-component

iterative placement methodology. The runtime increases significantly, in particular, due to
176

APPENDIX E. MACHINE INFORMATION AND STATISTICS

the image processing tasks involved in feature extraction, which considers the interaction
of all movable circuit components in an episode step. Furthermore, our vanilla implemen-
tations of TD3 and SAC may not be as optimised as those offered out of the box by
StableBaselines3 (Raffin et al., 2021), potentially contributing to increased runtime.

Experiment Algorithm Configurations Runs /
Configuration

Time /
Run (hr)

Training
Steps

Total Experiment
Time (hr)

Total Experiment
Steps (millions)

Parameter Experiments TD3 16 4 9 6E5 576 192Parameter Experiments SAC 16 4 11 6E5 704 192Ablation Experiments TD3 16 4 9 6E5 576 192Ablation Experiments SAC 16 4 11 6E5 704 192
Total 2560 768

Table E.4: Multi-Component Placement Experiment statistics

177

	List of Figures
	List of Tables
	Listings
	List of Abbreviations
	Introduction
	Motivation
	Aims and Objectives
	Proposed Solution
	Document Structure

	Background
	Electronic Design Automation
	IC Design Process
	Design Flow

	PCB Design Process
	Components
	PCB Structure
	Design Flow

	Graph Neural Networks
	Graph Neural Networks

	Reinforcement Learning
	Basics
	The Bellman Equation
	Fundamentals RL Algorithms
	Deep Reinforcement Learning
	Actor-Critic

	Literature Review
	PCB Placement
	General Placement
	Thermal-Aware PCB Placement
	PCB Placement for Power Modules

	Layout Techniques in IC Physical Design
	Black Box Optimisation
	Analytic Placers

	Machine Learning
	Performance Prediction
	Learning Based Placers

	Key Findings from Prior Work

	Materials & Methods
	Constructive Placer
	Gym Environment
	Placement Engine
	Dataset
	Wirelength Prediction
	Training and Experimental Setup
	Evaluation

	Single-Component Iterative Placer
	Iterative PCB Component Placement as an MDP
	Gym Environment
	Observation Space
	Action Space
	Reward Signal
	Dataset
	Training
	Experimental Setup
	Evaluation

	Multi-Component Iterative Placer
	Environment
	Computing Observations in a Multi-Component Setup
	Episodic Flow
	Dataset
	Training
	Experimental Setup
	Evaluation

	Results & Discussion
	Constructive Placer
	Wirelength Prediction
	Constructive Placement
	Key Conclusions for Constructive Placement

	Single-Component Iterative Placement
	Experiments with a Discrete Action Space and R1
	Experiments with a Discrete Action Space and R2x
	Experiments with a Continuous Action Space and R2x
	Action Space Comparison on R2x
	Experiments with a Continuous Action Space and R3
	Key Conclusions for Single-Component Iterative Placement

	Multi-Component Iterative Placement
	Reward Function Parameter Trade-off Experiments
	Ablation Experiments
	Qualitative Policy Analysis
	Key Conclusions for Multi-Component Iterative Placement

	Summary

	Conclusions
	Revisiting the Aims and Objectives
	Constructive Placer
	Formulating the PCB Component Problem as an RL task
	Design and Testing of a Single-Component PCB Placer
	Multi-Component RL Capable of Generalised PCB Placement

	Limitations
	Limitations of Constructive Placement
	Evaluation in terms of Post-Routing Wirelength
	Sub-Optimal Weighting of Adaptive Reward Parameters

	Future Work
	Expand the Multi-Component Setup
	Investigate the Offline Reinforcement Learning
	Improve Feature Extraction and Move Beyond Wirelength
	Improve Policy Performance

	References
	Infrastructure and tools
	KiCAD PCB Design Software Suite
	PCB Place and Route Tools
	Netlist Graph
	Internal Representation
	Automated Builds
	RL Framework
	Reproducibility of Results

	Datasets
	Constructive Placement Dataset
	Single-Component Iterative Placement Dataset
	Multi-Component Iterative Placement Dataset

	Supplementary Experiments
	Expectations from Single-Component Iterative Placement
	Single-Component Placement with Discrete Actions
	Quantitative Analysis of Episode and Step Length

	Single-Component Placement with Continuous Actions
	Preliminary Experiments
	Quantitative Analysis of Episode Length

	Multi-Component Iterative Placement
	Impact of Expert Knowledge on Learning Performance
	Impact of Replay Buffer on Adaptive Reward Learning

	Additional Background
	Artificial Neural Networks
	Perceptron Model
	Multi-Layer Perceptrons
	Neural Network Training

	Graph Theory
	Mathematical Representation

	Net Models
	Differentiable Net Models

	Machine Information and Statistics
	Machine Information
	Experiment Runtimes

